Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple genetic risk factors, high levels of interferon alpha (IFN-α), and the production of autoantibodies against components of the cell nucleus. Interferon regulatory factor 5 (IRF5) is a transcription factor which induces the transcription of IFN-α and other cytokines, and genetic variants of IRF5 have been strongly linked to SLE pathogenesis. IRF5 functions downstream of Toll-like receptors and other microbial pattern-recognition receptors, and immune complexes made up of SLE-associated autoantibodies seem to function as a chronic endogenous stimulus to this pathway. In this paper, we discuss the physiologic role of IRF5 in immune defense and the ways in which IRF5 variants may contribute to the pathogenesis of human SLE. Recent data regarding the role of IRF5 in both serologic autoimmunity and the overproduction of IFN-α in human SLE are summarized. These data support a model in which SLE-risk variants of IRF5 participate in a “feed-forward” mechanism, predisposing to SLE-associated autoantibody formation, and subsequently facilitating IFN-α production downstream of Toll-like receptors stimulated by immune complexes composed of these autoantibodies. 1. Introduction Systemic lupus erythematosus (SLE) is a complex and heterogeneous disease characterized by a strong genetic contribution and activation of a number of immune system pathways [1–3]. Recent advances in human genetics and gene expression studies have increased our understanding of the immunopathogenesis of the disorder [4]. Interferon (IFN)-α is a pleiotropic type I IFN with the potential to break self-tolerance by inducing dendritic cell differentiation, which can lead to the activation of autoreactive T and B cells [5, 6]. Serum IFN-α levels are often elevated in lupus patients [7–9] and the “IFN-α signature” of gene expression in peripheral blood mononuclear cells is present in more than 50% of SLE patients [10–14]. High IFN-α levels are associated with more severe disease and presence of particular autoantibodies [9, 14, 15]. Additionally, high levels of IFN-α are common in unaffected SLE family members, suggesting that IFN-α is a heritable risk factor [8, 16]. Moreover, some patients given recombinant human IFN-α for viral hepatitis C or malignancy have developed de novo SLE and recovered after the IFN-α was discontinued [17–19]. This body of evidence suggests that IFN-α plays a key role in etiology and pathogenesis of SLE. Interferon regulatory factor (IRF) 5 is a transcription factor that can induce
References
[1]
M. C. Hochberg, “Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 40, no. 9, p. 1725, 1997.
[2]
D. Alarcón-Segovia, M. E. Alarcón-Riquelme, M. H. Cardiel et al., “Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort,” Arthritis and Rheumatism, vol. 52, no. 4, pp. 1138–1147, 2005.
[3]
B. Rhodes and T. J. Vyse, “The genetics of SLE: an update in the light of genome-wide association studies,” Rheumatology, vol. 47, no. 11, pp. 1603–1611, 2008.
[4]
G. C. Tsokos, “Systemic lupus erythematosus,” The New England Journal of Medicine, vol. 365, no. 22, pp. 2110–2121, 2011.
[5]
P. Blanco, A. K. Palucka, M. Gill, V. Pascual, and J. Banchereau, “Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus,” Science, vol. 294, no. 5546, pp. 1540–1543, 2001.
[6]
T. B. Niewold, D. N. Clark, R. Salloum, and B. D. Poole, “Interferon alpha in systemic lupus erythematosus,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 948364, 8 pages, 2010.
[7]
T. Kim, Y. Kanayama, N. Negoro, M. Okamura, T. Takeda, and T. Inoue, “Serum levels of interferons in patients with systemic lupus erythematosus,” Clinical and Experimental Immunology, vol. 70, no. 3, pp. 562–569, 1987.
[8]
T. B. Niewold, J. Hua, T. J. A. Lehman, J. B. Harley, and M. K. Crow, “High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus,” Genes and Immunity, vol. 8, no. 6, pp. 492–502, 2007.
[9]
C. E. Weckerle, B. S. Franek, J. A. Kelly et al., “Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 63, no. 4, pp. 1044–1053, 2011.
[10]
E. C. Baechler, F. M. Batliwalla, G. Karypis et al., “Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2610–2615, 2003.
[11]
L. Bennett, A. K. Palucka, E. Arce et al., “Interferon and granulopoiesis signatures in systemic lupus erythematosus blood,” Journal of Experimental Medicine, vol. 197, no. 6, pp. 711–723, 2003.
[12]
G. M. Han, S. L. Chen, N. Shen, S. Ye, C. D. Bao, and Y. Y. Gu, “Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray,” Genes and Immunity, vol. 4, no. 3, pp. 177–186, 2003.
[13]
T. Ishii, H. Onda, A. Tanigawa et al., “Isolation and expression profiling of genes upregulated in the peripheral blood cells of systemic lupus erythematosus patients,” DNA Research, vol. 12, no. 6, pp. 429–439, 2005.
[14]
K. A. Kirou, C. Lee, S. George et al., “Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 50, no. 12, pp. 3958–3967, 2004.
[15]
K. Ko, B. S. Franek, M. Marion, K. M. Kaufman, C. D. Langefeld, and J. B. Harley, “Genetic ancestry, serum interferon-alpha activity, and autoantibodies in systemic lupus erythematosus,” Journal of Rheumatology, vol. 39, no. 6, pp. 1238–1240, 2012.
[16]
T. B. Niewold, J. E. Adler, S. B. Glenn, T. J. A. Lehman, J. B. Harley, and M. K. Crow, “Age- and sex-related patterns of serum interferon-α activity in lupus families,” Arthritis and Rheumatism, vol. 58, no. 7, pp. 2113–2119, 2008.
[17]
L. E. Ronnblom, K. E. Oberg, and G. V. Alm, “Possible induction of systemic lupus erythematosus by interferon α-treatment in a patient with a malignant carcinoid tumour,” Journal of Internal Medicine, vol. 227, no. 3, pp. 207–210, 1990.
[18]
T. B. Niewold and W. I. Swedler, “Systemic lupus erythematosus arising during interferon-alpha therapy for cryoglobulinemic vasculitis associated with hepatitis C,” Clinical Rheumatology, vol. 24, no. 2, pp. 178–181, 2005.
[19]
T. B. Niewold, “Interferon alpha-induced lupus: proof of principle,” Journal of Clinical Rheumatology, vol. 14, no. 3, pp. 131–132, 2008.
[20]
B. J. Barnes, P. A. Moore, and P. M. Pitha, “Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes,” Journal of Biological Chemistry, vol. 276, no. 26, pp. 23382–23390, 2001.
[21]
S. Sigurdsson, G. Nordmark, H. H. H. G?ring et al., “Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus,” American Journal of Human Genetics, vol. 76, no. 3, pp. 528–537, 2005.
[22]
R. R. Graham, S. V. Kozyrev, E. C. Baechler et al., “A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus,” Nature Genetics, vol. 38, no. 5, pp. 550–555, 2006.
[23]
R. R. Graham, C. Kyogoku, S. Sigurdsson et al., “Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 16, pp. 6758–6763, 2007.
[24]
H. D. Shin, Y. K. Sung, C. B. Choi, S. O. Lee, H. W. Lee, and S. C. Bae, “Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population,” Arthritis Research and Therapy, vol. 9, article R32, 2007.
[25]
M. V. P. L. Reddy, R. Velázquez-Cruz, V. Baca et al., “Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans,” Human Genetics, vol. 121, no. 6, pp. 721–727, 2007.
[26]
A. Kawasaki, C. Kyogoku, J. Ohashi et al., “Association of IRF5 polymorphisms with systemic lupus erythematosus in a Japanese population: support for a crucial role of intron 1 polymorphisms,” Arthritis and Rheumatism, vol. 58, no. 3, pp. 826–834, 2008.
[27]
J. A. Kelly, J. M. Kelley, K. M. Kaufman et al., “Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans,” Genes and Immunity, vol. 9, no. 3, pp. 187–194, 2008.
[28]
S. Sigurdsson, H. H. H. G?ring, G. Kristjansdottir et al., “Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus,” Human Molecular Genetics, vol. 17, no. 6, pp. 872–881, 2008.
[29]
H. O. Siu, W. Yang, C. S. Lau et al., “Association of a haplotype of IRF5 gene with systemic lupus erythematosus in Chinese,” Journal of Rheumatology, vol. 35, no. 2, pp. 360–362, 2008.
[30]
G. Hom, R. R. Graham, B. Modrek et al., “Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX,” New England Journal of Medicine, vol. 358, no. 9, pp. 900–909, 2008.
[31]
V. Gateva, J. K. Sandling, G. Hom et al., “A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus,” Nature Genetics, vol. 41, no. 11, pp. 1228–1233, 2009.
[32]
J. W. Han, H. F. Zheng, Y. Cui, L. D. Sun, D. Q. Ye, and Z. Hu, “Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus,” Nature Genetics, vol. 41, no. 11, pp. 1234–1237, 2009.
[33]
T. M. Jarvinen, A. Hellquist, M. Zucchelli, S. Koskenmies, J. Panelius, and T. Hasan, “Replication of GWAS-identified systemic lupus erythematosus susceptibility genes affirms B-cell receptor pathway signalling and strengthens the role of IRF5 in disease susceptibility in a Northern European population,” Rheumatology, vol. 51, no. 1, pp. 87–92, 2012.
[34]
G. B. Nordang, M. K. Viken, S. S. Amundsen, E. S. Sanchez, B. Flato, and O. T. Forre, “Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts,” Rheumatology, vol. 51, no. 4, pp. 619–626, 2012.
[35]
N. Nelson, M. S. Marks, P. H. Driggers, and K. Ozato, “Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription,” Molecular and Cellular Biology, vol. 13, no. 1, pp. 588–599, 1993.
[36]
C. R. Escalante, J. Yie, D. Thanos, and A. K. Aggarwal, “Structure of IRF-1 with bound DNA reveals determinants of interferon regulation,” Nature, vol. 391, no. 6662, pp. 103–106, 1998.
[37]
K. Santana-de Anda, D. Gomez-Martin, M. Diaz-Zamudio, and J. Alcocer-Varela, “Interferon regulatory factors: beyond the antiviral response and their link to the development of autoimmune pathology,” Autoimmunity Reviews, vol. 11, no. 2, pp. 98–103, 2011.
[38]
S. E. Sweeney, “Targeting interferon regulatory factors to inhibit activation of the type I IFN response: implications for treatment of autoimmune disorders,” Cellular Immunology, vol. 271, no. 2, pp. 342–349, 2011.
[39]
T. Krausgruber, K. Blazek, T. Smallie et al., “IRF5 promotes inflammatory macrophage polarization and T H1-TH17 responses,” Nature Immunology, vol. 12, no. 3, pp. 231–238, 2011.
[40]
S. V. Kozyrev and M. E. Alarcon-Riquelme, “The genetics and biology of Irf5-mediated signaling in lupus,” Autoimmunity, vol. 40, no. 8, pp. 591–601, 2007.
[41]
B. J. Barnes, M. J. Kellum, A. E. Field, and P. M. Pitha, “Multiple regulatory domains of IRF-5 control activation, cellular localization, and induction of chemokines that mediate recruitment of T lymphocytes,” Molecular and Cellular Biology, vol. 22, no. 16, pp. 5721–5740, 2002.
[42]
T. Taniguchi, K. Ogasawara, A. Takaoka, and N. Tanaka, “IRF family of transcription factors as regulators of host defense,” Annual Review of Immunology, vol. 19, pp. 623–655, 2001.
[43]
T. Kawasaki, T. Kawai, and S. Akira, “Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity,” Immunological Reviews, vol. 243, no. 1, pp. 61–73, 2011.
[44]
T. F. Cheng, S. Brzostek, O. Ando, S. Van Scoy, K. P. Kumar, and N. C. Reich, “Differential activation of IFN regulatory factor (IRF)-3 and IRF-5 transcription factors during viral infection,” Journal of Immunology, vol. 176, no. 12, pp. 7462–7470, 2006.
[45]
A. Schoenemeyer, B. J. Barnes, M. E. Mancl et al., “The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 17005–17012, 2005.
[46]
A. Takaoka, H. Yanai, S. Kondo et al., “Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors,” Nature, vol. 434, no. 7030, pp. 243–249, 2005.
[47]
T. Kawai, S. Sato, K. J. Ishii et al., “Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6,” Nature Immunology, vol. 5, no. 10, pp. 1061–1068, 2004.
[48]
M. Y. Balkhi, K. A. Fitzgerald, and P. M. Pitha, “Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination,” Molecular and Cellular Biology, vol. 28, no. 24, pp. 7296–7308, 2008.
[49]
L. Deng, C. Wang, E. Spencer et al., “Activation of the Iκb kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain,” Cell, vol. 103, no. 2, pp. 351–361, 2000.
[50]
D. Feng, N. Sangster-Guity, R. Stone et al., “Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression,” Journal of Immunology, vol. 185, no. 10, pp. 6003–6012, 2010.
[51]
R. Baccala, K. Hoebe, D. H. Kono, B. Beutler, and A. N. Theofilopoulos, “TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity,” Nature Medicine, vol. 13, no. 5, pp. 543–551, 2007.
[52]
W. C. Au, W. S. Yeow, and P. M. Pitha, “Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3,” Virology, vol. 280, no. 2, pp. 273–282, 2001.
[53]
R. Lin, Y. Mamane, and J. Hiscott, “Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains,” Molecular and Cellular Biology, vol. 19, no. 4, pp. 2465–2474, 1999.
[54]
H. C. Chang Foreman, S. Van Scoy, T. F. Cheng, and N. C. Reich, “Activation of interferon regulatory factor 5 by site specific phosphorylation,” PloS ONE, vol. 7, no. 3, Article ID e33098, 2012.
[55]
W. Chen, S. S. Lam, H. Srinath et al., “Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5,” Nature Structural and Molecular Biology, vol. 15, no. 11, pp. 1213–1220, 2008.
[56]
R. Lin, L. Yang, M. Arguello, C. Penafuerte, and J. Hiscott, “A CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization,” Journal of Biological Chemistry, vol. 280, no. 4, pp. 3088–3095, 2005.
[57]
B. J. Barnes, A. E. Field, and P. M. Pitha-Rowe, “Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhanceosome in vivo and transcriptional activity of IFNA genes,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 16630–16641, 2003.
[58]
C. M. Pickart and D. Fushman, “Polyubiquitin chains: polymeric protein signals,” Current Opinion in Chemical Biology, vol. 8, no. 6, pp. 610–616, 2004.
[59]
J. E. Hutti, B. E. Turk, J. M. Asara, A. Ma, L. C. Cantley, and D. W. Abbott, “IκB kinase β phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway,” Molecular and Cellular Biology, vol. 27, no. 21, pp. 7451–7461, 2007.
[60]
M. E. Mancl, G. Hu, N. Sangster-Guity et al., “Two discrete promoters regulate the alternatively spliced human interferon regulatory factor-5 isoforms: multiple isoforms with distinct cell type-specific expression, localization, regulation, and function,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21078–21090, 2005.
[61]
I. Nusinzon and C. M. Horvath, “Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation,” Science's STKE, vol. 2005, no. 296, article re11, 2005.
[62]
A. Caillaud, A. Prakash, E. Smith et al., “Acetylation of interferon regulatory factor-7 by p300/CREB-binding protein (CBP)-associated factor (PCAF) impairs its DNA binding,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49417–49421, 2002.
[63]
A. Masumi, Y. Yamakawa, H. Fukazawa, K. Ozato, and K. Komuro, “Interferon regulatory factor-2 regulates cell growth through its acetylation,” Journal of Biological Chemistry, vol. 278, no. 28, pp. 25401–25407, 2003.
[64]
T. B. Niewold, J. A. Kelly, S. N. Kariuki, B. S. Franek, A. A. Kumar, and K. M. Kaufman, “IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus,” Annals of the Rheumatic Diseases, vol. 71, no. 3, pp. 463–468, 2012.
[65]
S. V. Kozyrev, S. Lewén, P. M. V. L. Reddy et al., “Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1234–1241, 2007.
[66]
D. S. C. Graham, H. Manku, S. Wagner et al., “Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation,” Human Molecular Genetics, vol. 16, no. 6, pp. 579–591, 2007.
[67]
F. Wen, S. M. Ellingson, C. Kyogoku, E. J. Peterson, and P. M. Gaffney, “Exon 6 variants carried on systemic lupus erythematosus (SLE) risk haplotypes modulate IRF5 function,” Autoimmunity, vol. 44, no. 2, pp. 82–89, 2011.
[68]
T. B. Niewold, J. A. Kelly, M. H. Flesch, L. R. Espinoza, J. B. Harley, and M. K. Crow, “Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients,” Arthritis and Rheumatism, vol. 58, no. 8, pp. 2481–2487, 2008.
[69]
D. Feng, R. C. Stone, M. L. Eloranta et al., “Genetic variants and disease-associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 562–573, 2010.
[70]
O. J. Rullo, J. M. P. Woo, H. Wu et al., “Association of IRF5 polymorphisms with activation of the interferon α pathway,” Annals of the Rheumatic Diseases, vol. 69, no. 3, pp. 611–617, 2010.
[71]
C. Richez, K. Yasuda, R. G. Bonegio et al., “IFN regulatory factor 5 is required for disease development in the FcγRIIB-/-Yaa and FcγRIIB-/- mouse models of systemic lupus erythematosus,” Journal of Immunology, vol. 184, no. 2, pp. 796–806, 2010.
[72]
D. A. Savitsky, H. Yanai, T. Tamura, T. Taniguchi, and K. Honda, “Contribution of IRF5 in B cells to the development of murine SLE-like disease through its transcriptional control of the IgG2a locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 22, pp. 10154–10159, 2010.
[73]
C. Lien, C. M. Fang, D. Huso, F. Livak, R. Lu, and P. M. Pitha, “Critical role of IRF-5 in regulation of B-cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 10, pp. 4664–4668, 2010.
[74]
T. B. Niewold, T. L. Rivera, J. P. Buyon, and M. K. Crow, “Serum type I interferon activity is dependent on maternal diagnosis in anti-SSA/Ro-positive mothers of children with neonatal lupus,” Arthritis and Rheumatism, vol. 58, no. 2, pp. 541–546, 2008.
[75]
T. S. Cherian, S. N. Kariuki, B. S. Franek, J. P. Buyon, R. M. Clancy, and T. B. Niewold, “IRF5 SLE-risk haplotype is associated with asymptomatic serologic autoimmunity and progression to clinical autoimmunity in neonatal lupus mothers,” Arthritis and Rheumatism, vol. 64, no. 10, pp. 3383–3387, 2012.
[76]
R. Salloum and T. B. Niewold, “Interferon regulatory factors in human lupus pathogenesis,” Translational Research, vol. 157, no. 6, pp. 326–331, 2011.
[77]
T. Robinson, S. N. Kariuki, B. S. Franek, M. Kumabe, A. A. Kumar, and M. Badaracco, “Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients,” Journal of Immunology, vol. 187, no. 3, pp. 1298–1303, 2011.
[78]
J. Pothlichet, T. B. Niewold, D. Vitour, B. Solhonne, M. K. Crow, and M. Si-Tahar, “A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients,” EMBO Molecular Medicine, vol. 3, no. 3, pp. 142–152, 2011.
[79]
R. Salloum, B. S. Franek, S. N. Kariuki et al., “Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-α activity in lupus patients,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 553–561, 2010.
[80]
S. Agik, B. S. Franek, A. A. Kumar, M. Kumabe, T. O. Utset, and R. A. Mikolaitis, “The autoimmune disease risk allele of UBE2L3 in African American patients with systemic lupus erythematosus: a recessive effect upon subphenotypes,” Journal of Immunology, vol. 39, no. 1, pp. 73–78, 2012.
[81]
T. B. Niewold, “Interferon alpha as a primary pathogenic factor in human lupus,” Journal of Interferon & Cytokine Research, vol. 31, no. 12, pp. 887–892, 2011.
[82]
S. N. Kariuki, B. S. Franek, A. A. Kumar et al., “Trait-stratified genome-wide association study identifies novel and diverse genetic associations with serologic and cytokine phenotypes in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 12, no. 4, article R151, 2010.
[83]
Y. Deng and B. P. Tsao, “Genetic susceptibility to systemic lupus erythematosus in the genomic era,” Nature Reviews Rheumatology, vol. 6, no. 12, pp. 683–692, 2010.
[84]
G. S. Garcia-Romo, S. Caielli, B. Vega et al., “Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus,” Science Translational Medicine, vol. 3, no. 73, Article ID 73ra20, 2011.
[85]
R. Lande, D. Ganguly, V. Facchinetti et al., “Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus,” Science Translational Medicine, vol. 3, no. 73, Article ID 73ra19, 2011.
[86]
E. J. Hennessy, A. E. Parker, and L. A. J. O'Neill, “Targeting Toll-like receptors: emerging therapeutics?” Nature Reviews Drug Discovery, vol. 9, no. 4, pp. 293–307, 2010.
[87]
E. I. Lichtman, S. M. Helfgott, and M. A. Kriegel, “Emerging therapies for systemic lupus erythematosus—focus on targeting interferon-alpha,” Clinical Immunology, vol. 143, no. 3, pp. 210–221, 2012.