Hot-dip aluminizing of low carbon steel was done in molten Al-7Si-2Cu bath at 690°C for dipping time ranging from 300 to 2400 seconds. Characterization of the intermetallics layer was done by using scanning electron microscope with energy dispersive spectroscopy. Four intermetallic phases, -Al7Fe2Si, -FeAl3, -Fe2Al5, and -Al2Fe3Si3, were identified in the reaction layer. - Al7Fe2Si phase was observed adjacent to aluminum-silicon topcoat, -FeAl3 between and -Fe2Al5, -Fe2Al5 adjacent to base material, and -Al2Fe3Si3 precipitates within Fe2Al5 layer. The average thickness of Fe2Al5 layer increased linearly with square root of dipping time, while for the rest of the layers such relationship was not observed. The tongue-like morphology of Fe2Al5 layer was more pronounced at higher dipping time. Overall intermetallic layer thickness was following parabolic relationship with dipping time. 1. Introduction Hot-dip aluminizing is an effective and inexpensive coating process to protect steels from oxidation [1, 2]. The quality of coating depends on the properties of the intermetallics layer forming at the interface. A brittle intermetallic layer may peel off from surface during forming operations [3], which generally follows aluminizing treatment. Therefore it becomes necessary to study the formation of intermetallics layer under different conditions. Gebhardt and Obrowski [4] observed that when steel comes in contact with the molten aluminum, the major intermetallic layer formed is Fe2Al5. Bouché et al. [5] reported the formation of two intermetallic layers, namely, Fe2Al5 and FeAl3, when solid iron is dipped in liquid aluminum over the temperature range 700°C to 900°C. They reported that the growth behaviour is initially nonparabolic which is followed by parabolic. Kinetic studies done by Bouayad et al. [6] for medium dipping times (<45?min) showed that the growth of Fe2Al5 layer is diffusion controlled and FeAl3 layer growth is linear with time. Many researchers tried to explain the observed tongue-like morphology of the intermetallic layers [5–7] and are of the opinion that the anisotropic diffusion is responsible for this growth. Springer et al. [8] investigated interdiffusion between low carbon steel and pure Al (99.99%) and Al alloy (Al-5%Si) between temperatures 600°C and 675°C and showed that growth rate of -layer (Fe2Al5) is diffusion controlled and it governs overall intermetallic layer growth. Cheng and Wang [9] observed that as the silicon content in the molten bath increases, the thickness of intermetallic layer decreases as well as the interface
References
[1]
Y.-Y. Chang, C.-C. Tsaur, and J. C. Rock, “Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation,” Surface and Coatings Technology, vol. 200, no. 22-23, pp. 6588–6593, 2006.
[2]
C.-J. Wang and S.-M. Chen, “The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel,” Surface and Coatings Technology, vol. 200, no. 22-23, pp. 6601–6605, 2006.
[3]
J. Maki, M. Suehiro, and Y. Ikematsu, “Alloying reaction of aluminized steel sheet,” ISIJ International, vol. 50, no. 8, pp. 1205–1210, 2010.
[4]
E. Gebhardt and W. Obrowski, “Reactionen von festem eisenmit schmelzen aus aluminium und aluminumlegierungen,” Metallkunde, vol. 4, p. 154, 1953.
[5]
K. Bouché, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminium,” Materials Science and Engineering A, vol. 249, no. 1-2, pp. 167–175, 1998.
[6]
A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, “Kinetic interactions between solid iron and molten aluminium,” Materials Science and Engineering A, vol. 363, no. 1-2, pp. 53–61, 2003.
[7]
V. I. Dybkov, “Interaction of 18Cr-10Ni stainless steel with liquid aluminium,” Journal of Materials Science, vol. 25, no. 8, pp. 3615–3633, 1990.
[8]
H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler, “On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys,” Acta Materialia, vol. 59, no. 4, pp. 1586–1600, 2011.
[9]
W.-J. Cheng and C.-J. Wang, “Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel,” Intermetallics, vol. 19, no. 10, pp. 1455–1460, 2011.
[10]
W.-J. Cheng and C.-J. Wang, “Characterization of intermetallic layer formation in aluminide/nickel duplex coating on mild steel,” Materials Characterization, vol. 69, pp. 63–70, 2012.
[11]
Y.-J. Li, J. Wang, and X. Holly, “X-ray diffraction and TEM analysis of Fe—Al alloy layer in coating of new hot dip aluminised steel,” Materials Science and Technology, vol. 19, no. 5, pp. 657–660, 2003.
[12]
K. U. Bhat, P. Huilgol, and J. Jithin, “Aluminising of mild steel plates,” ISRN Metallurgy, vol. 2013, Article ID 191723, 6 pages, 2013.
[13]
M. V. Akdeniz and A. O. Mekhrabov, “The effect of substitutional impurities on the evolution of Fe-Al diffusion layer,” Acta Materialia, vol. 46, no. 4, pp. 1185–1192, 1998.
[14]
W.-Y. Kim, D. E. Luzzi, and D. P. Pope, “Room temperature deformation behavior of the Hf-V-Ta C15 Laves phase,” Intermetallics, vol. 11, no. 3, pp. 257–267, 2003.
[15]
J. L. Song, S. B. Lin, C. L. Yang, C. L. Fan, and G. C. Ma, “Analysis of intermetallic layer in dissimilar TIG welding-brazing butt joint of aluminium alloy to stainless steel,” Science and Technology of Welding and Joining, vol. 15, no. 3, pp. 213–218, 2010.
[16]
S. B. Lin, J. L. Song, C. L. Yang, C. L. Fan, and D. W. Zhang, “Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al-Cu filler metal,” Materials and Design, vol. 31, no. 5, pp. 2637–2642, 2010.
[17]
V. I. Dybkov, “Phase stability during growth of compound layers,” Materials Science Forum, vol. 155-156, pp. 31–38, 1994.
[18]
W. Zhang, D. Sun, L. Han, W. Gao, and X. Qiu, “Characterization of intermetallic compounds in dissimilar material resistance spot welded joint of high strength steel and aluminum alloy,” ISIJ International, vol. 51, no. 11, pp. 1870–1877, 2011.
[19]
W. Deqing, S. Ziyuan, and Z. Longjiang, “A liquid aluminum corrosion resistance surface on steel substrate,” Applied Surface Science, vol. 214, no. 1–4, pp. 304–311, 2003.
[20]
S.-H. Hwang, J.-H. Song, and Y.-S. Kim, “Effects of carbon content on its dissolution in to molten aluminum alloy,” Materials Science and Engineering, vol. 390, pp. 437–443, 2005.
[21]
D. R. G. Achar, J. Ruge, and S. Sundaresan, “Metallurgical and mechanical investigations of aluminum-steel fusion welds,” Aluminium, vol. 56, no. 6, pp. 391–397, 1980.