The dependence of loop tack, peel strength, and shear strength of NBR/SMR L blend-based pressure-sensitive adhesives on the rate of testing was investigated using coumarone-indene resin and toluene as the tackifier and solvent, respectively. A 40% NBR content in the NBR/SMR L blend was used throughout the experiment. The adhesion properties were measured by a Lloyd Adhesion Tester operating at different rates of testing. The result indicates that loop tack, peels strength, and shear strength increase with the rate of testing due to the viscoelastic response of the adhesive. At low testing rate, the failure mode is cohesive in nature whereas adhesion failure mode occurs at higher testing rates. Adhesion properties also increase with the increase in adhesive coating thickness, an observation which is attributed to the wettability of the adhesive and viscoelastic behavior of the rubber blend. 1. Introduction Natural rubber has been commonly used to prepare pressure-sensitive adhesives. In order to increase the adhesion property of the adhesive, it is necessary to add tackifying resins such as wood resin, terpene resin, and petroleum-based resins to the rubber adhesive [1]. Besides tackifying resins, other parameters that affect the adhesion properties of rubber-based adhesives are temperature, coating thickness, molecular weight of rubber, rate of testing, and coating substrates. Recently, Rezaeian et al. [2] have reviewed the rubber adhesion to different substrates and its importance in industrial applications. Riyajan and Pheweaw [3] have studied the modification of skim rubber blended with poly(vinyl alcohol) to be applied as a biodegradable pressure-sensitive adhesive. Meanwhile, Stephen et al. [4] reported the adhesive formulations with ternary blends using simplex lattice design. Thitithammawong et al. [5] found that chlorinated epoxidized natural rubber adhesives exhibited higher shear strength compared to some commercial adhesives. Several studies on the adhesion properties of natural rubber-based adhesives have also been carried out. These include the investigation of the adhesion properties of styrene-natural rubber (SNR) adhesives [6] and adhesion properties of filled rubber adhesives [7–9]. However, with respect to adhesion properties of polymer blends, very few works were reported in the literature. Phillips et al. [10, 11] have studied the adhesive properties of polymer blends using block copolymers as the elastomers whereas Smitthipong et al. [12] reported on the self-adhesion of immiscible polyisoprene rubber-hydrogenated
References
[1]
D. Satas, Ed., Handbook of Pressure-Sensitive Adhesive Technology, Van Nostrand Reinhold, New York, NY, USA, 1982.
[2]
I. Rezaeian, P. Zahedi, and A. Rezaeian, “Rubber adhesion to different substrates and its importance in industrial applications: a review,” Journal of Adhesion Science and Technology, vol. 26, pp. 721–744, 2012.
[3]
S. Riyajan and N. Pheweaw, “Modification of skim rubber blended with poly (vinyl alcohol) to be applied as a biodegradable pressure-sensitive adhesive: effect of 2,6-DI-T-butyl-4-methylphenol and hydrocarbon resin,” Rubber Chemistry and Technology, vol. 85, pp. 547–558, 2012.
[4]
O. Stephen, R. Fatima, and A. A. Ikechukwu, “Adhesive formulations with ternary blends using simplex lattice design,” International Journal of Physical Sciences, vol. 5, no. 13, pp. 2098–2103, 2010.
[5]
A. Thitithammawong, N. Ruttanasupa, and C. Nakason, “Preparation and properties of chlorinated epoxidised natural rubber latex and its latex-based adhesive,” Journal of Rubber Research, vol. 15, no. 1, pp. 19–34, 2012.
[6]
S. B. Neoh, X. M. Lee, A. R. Azura, and A. S. Hashim, “Effect of in situ polymerization of styrene onto natural rubber on adhesion properties of styrene-natural rubber (SNR) adhesives,” Journal of Adhesion, vol. 86, no. 8, pp. 857–871, 2010.
[7]
B. T. Poh and C. F. Gan, “Viscosity and peel strength of magnesium oxide-filled adhesive prepared from epoxidized natural rubber (ENR 25),” Polymer-Plastics Technology and Engineering, vol. 49, pp. 191–194, 2010.
[8]
I. Khan and B. T. Poh, “The effect of silica on the peel adhesion of epoxidized natural rubber-based adhesive containing coumarone-indene resin,” Polymer-Plastics Technology and Engineering, vol. 49, pp. 1356–1360, 2010.
[9]
I. Khan, B. T. Poh, and C. M. Badriah, “Effect of sodium sulfate on the viscosity, tack, and adhesion properties of SMR 10-based pressure-sensitive adhesive,” Journal of Elastomers and Plastics, vol. 43, no. 1, pp. 85–95, 2011.
[10]
J. P. Phillips, X. Deng, R. R. Stephen et al., “Nano- and bulk-tack adhesive properties of stimuli-responsive, fullerene-polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives,” Polymer, vol. 48, no. 23, pp. 6773–6781, 2007.
[11]
J. P. Phillips, X. Deng, M. L. Todd et al., “Singlet oxygen generation and adhesive loss in stimuli-responsive, fullerene-polymer blends, containing polystyrene-block-polybutadiene-block- polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives,” Journal of Applied Polymer Science, vol. 109, no. 5, pp. 2895–2904, 2008.
[12]
W. Smitthipong, M. Nardin, J. Schultz, and K. Suchiva, “Adhesion and self-adhesion of immiscible rubber blends,” International Journal of Adhesion and Adhesives, vol. 29, no. 3, pp. 253–258, 2009.
[13]
B. T. Poh and L. N. Ong, “Adhesion properties of styrene-butadiene rubber (SBR)/ Standard Malaysian Rubber (SMR L)-based adhesives in the presence of phenol formaldehyde resin,” eXPRESS Polymer Letters, vol. 1, pp. 654–659, 2007.
[14]
B. T. Poh and S. S. Heng, “Effect of blend ratio on adhesion properties of pressure-sensitive adhesives prepared from SBR/SMR L blends,” Polymer-Plastics Technology and Engineering, vol. 47, pp. 325–329, 2008.
[15]
B. T. Poh and A. L. Lim, “Adhesion properties of pressure-sensitive adhesives prepared from SMR 10/ENR 25, SMR 10/ENR 50, and ENR 25/ENR 50 blends,” Journal of Applied Polymer Science, vol. 109, pp. 115–119, 2008.
[16]
B. T. Poh and I. Khan, “Effect of test rate on adhesion properties of SMR L, ENR-25 and ENR-50-based pressure-sensitive adhesives effect of test rate on adhesion properties of SMR L, ENR-25 and ENR-50-based pressure-sensitive adhesives,” Journal of Adhesion Science and Technology, vol. 26, no. 6, pp. 873–881, 2012.
[17]
I. Khan and B. T. Poh, “Natural rubber-based pressure-sensitive adhesives: a review,” Journal of Polymers and the Environment, vol. 19, no. 3, pp. 793–811, 2011.
[18]
C. K. L. Davies, S. V. Wolfe, I. R. Gelling, and A. G. Thomas, “Strain crystallization in random copolymers produced by epoxidation of cis 1,4-polyisoprene,” Polymer, vol. 24, no. 1, pp. 107–113, 1983.
[19]
G. Gierenz and W. Karmann, Eds., Adhesive and Adhesive Tapes, Wiley-VCH, New York, NY, USA, 2001.
[20]
L. H. Lee, Adhesive Bonding, Plenum Press, New York, NY, USA, 1991.
[21]
I. Skeist, Ed., Handbook of Adhesives, Van Nostrand Reinhold, New York, NY, USA, 3rd edition, 1990.