全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Review of Recent Developments and the Future Prospective in West African Atmosphere/Land Interaction Studies

DOI: 10.1155/2012/748921

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reviews West African land/atmosphere interaction studies during the past decade. Four issues are addressed in this paper: land data development, land/atmosphere interactions at seasonal-interannual scales, mesoscale studies, and the future prospective. The development of the AMMA Land Surface Model Intercomparison Project has produced a valuable analysis of the land surface state and fluxes which have been applied in a number of large-scale African regional studies. In seasonal-interannual West African climate studies, the latest evidence from satellite data analyses and modeling studies confirm that the West African region has a climate which is particularly sensitive to land surface processes and there is a strong coupling between land surface processes and regional climate at intraseasonal/seasonal scales. These studies indicate that proper land surface process representations and land status initialization would substantially improve predictions and enhance the predictability of West African climate. Mesoscale studies have revealed new understanding of how soil moisture heterogeneity influences the development of convective storms over the course of the diurnal cycle. Finally, several important issues regarding the future prospective are briefly addressed. 1. Introduction West Africa is a diverse climatic region that includes a semiarid tropical zone in its northern section and a humid tropical climate zone in its southern section. Today, it is a bioclimatic zone of predominantly annual grasses with shrubs and trees, receiving a mean annual rainfall of between 150 and 2500?mm per year (Figure 1(a)). According to the United Nations’ definition [1], it includes 16 African countries and covers an area in excess of approximately 6?million?km2. Its northern boundary is along the southern margin of the Sahara Desert, with the Atlantic Ocean to its west and to its south. There is no consensus on its eastern boundary, which is commonly specified using a line running from Mount Cameroon to Lake Chad. The elevation of the vast majority of this land is less than 300 meters above sea level, though isolated points of higher elevation exist in several countries along the southern shore of the region. Figure 1: (a) Observed climate annual mean precipitation (mm?day ?1); (b) time series of June-July-August-September (JJAS) mean precipitation (mm?day ?1) averaged over 20°W to 20°E and 5°N to 20°N (the box outlined in (a)); (c) observed JJAS precipitation difference (mm?day ?1) between the 1980s and the 1950s; (d) observed JJAS precipitation difference

References

[1]  United Nations Office for West Africa, West Africa, http://unowa.unmissions.org/Default.aspx?tabid=793.
[2]  M. Hulme, “Validation of large-scale precipitation fields in General Circulation Models,” in Global Precipitations and Climate Change, M. Desbois and F. Desalmand, Eds., NATO ASI Series, p. 466, Springer, Berlin, Germany, 1994.
[3]  S. E. Nicholson, B. Some, and B. Kone, “An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Nino and the 1998 La Nina years,” Journal of Climate, vol. 13, no. 14, pp. 2628–2640, 2000.
[4]  L. Le Barbé, T. Lebel, and D. Tapsoba, “Rainfall variability in West Africa during the years 1950–1990,” Journal of Climate, vol. 15, no. 2, pp. 187–202, 2002.
[5]  A. Dai, P. J. Lamb, K. E. Trenberth, M. Hulme, P. D. Jones, and P. Xie, “The recent Sahel drought is real,” International Journal of Climatology, vol. 24, no. 11, pp. 1323–1331, 2004.
[6]  W. K. M. Lau, K. M. Kim, and M. I. Lee, “Characteristics of diurnal and seasonal cycles in global monsoon systems,” Journal of the Meteorological Society of Japan, vol. 85, pp. 403–416, 2007.
[7]  J. L. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, “African Monsoon Multidisciplinary Analysis: an international research project and field campaign,” Bulletin of the American Meteorological Society, vol. 88, no. 12, pp. 1739–1746, 2006.
[8]  United Nations, “World Population Prospects,” United Nations Publication, pp. 801, 2009.
[9]  P. J. Lamb, “Large-scale tropical Atlantic surface circulation patterns associated with sub-Saharan weather anomalies,” Tellus, vol. 30, pp. 240–251, 1978.
[10]  C. J. Folland, M. Owen, N. Ward, and A. Colman, “Prediction of seasonal rainfall in the Sahel region using empirical and dynamical methods,” Journal of Forecasting, vol. 1, pp. 21–56, 1991.
[11]  T. Lebel, B. Cappelaere, S. Galle et al., “AMMA-CATCH studies in the Sahelian region of West-Africa: an overview,” Journal of Hydrology, vol. 375, no. 1-2, pp. 3–13, 2009.
[12]  J. Charney, W. J. Quirk, S. H. Chow, and J. Kornfield, “A comparative study of the effects of albedo change on drought in semi-arid regions,” Journal of the Atmospheric Sciences, vol. 34, no. 9, pp. 1366–1385, 1977.
[13]  K. Laval and L. Picon, “Effect of a change of the surface albedo of the Sahel on climate,” Journal of the Atmospheric Sciences, vol. 43, no. 21, pp. 2418–2429, 1986.
[14]  Y. Xue, K.-N. Liou, and A. Kasahara, “Investigation of the biophysical feedback on the African climate using a two-dimensional model,” Journal of Climate, vol. 3, pp. 337–352, 1990.
[15]  Y. Xue and J. Shukla, “The influence of land surface properties on Sahel climate. Part I: desertification,” Journal of Climate, vol. 6, no. 12, pp. 2232–2245, 1993.
[16]  E. A. B. Eltahir and C. Gong, “Dynamics of wet and dry years in West Africa,” Journal of Climate, vol. 9, no. 5, pp. 1030–1042, 1996.
[17]  C. M. Taylor, E. F. Lambin, N. Stephenne, R. J. Harding, and R. L. H. Essery, “The influence of land use change on climate in the Sahel,” Journal of Climate, vol. 15, no. 24, pp. 3615–3629, 2002.
[18]  N. Zeng, J. D. Neelin, K. M. Lau, and C. J. Tucker, “Enhancement of interdecadal climate variability in the Sahel by vegetation interaction,” Science, vol. 286, no. 5444, pp. 1537–1540, 1999.
[19]  G. Wang and E. A. B. Eltahir, “Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall,” Water Resources Research, vol. 36, no. 4, pp. 1013–1021, 2000.
[20]  S. Nicholson, “Land surface processes and Sahel climate,” Reviews of Geophysics, vol. 38, no. 1, pp. 117–139, 2000.
[21]  Y. Xue, R. W. A. Hutjes, R. J. Harding, et al., “The Sahelian Climate (Chapter A5),” in Vegetation, Water, Humans and the Climate, P. Kabat, M. Claussen, P. A. Dirmeyer, et al., Eds., pp. 59–77, Springer, Berlin, Germany, 2004.
[22]  C. M. Taylor, D. J. Parker, N. Kalthoff, et al., “New perspectives on land–atmosphere feedbacks from the African Monsoon Multidisciplinary Analysis,” Atmospheric Science Letters, vol. 12, pp. 38–44, 2011.
[23]  P. Xie and P. A. Arkin, “Global Precipitation: a 17-year monthly analysis based on Gauge observations, satellite estimates, and numerical model outputs,” Bulletin of the American Meteorological Society, vol. 78, no. 11, pp. 2539–2558, 1997.
[24]  J. P. Goutorbe, A. J. Dolman, J. H. C. Gash, et al., HAPEX—Sahel, Elsevier, Amsterdam, The Netherlands, 1997.
[25]  T. Lebel, D. J. Parker, C. Flamant et al., “The AMMA field campaigns: accomplishments and lessons learned,” Atmospheric Science Letters, vol. 12, no. 1, pp. 123–128, 2011.
[26]  A. Boone, P. de Rosnay, G. Balsamo et al., “The AMMA land surface model intercomparison project (ALMIP),” Bulletin of the American Meteorological Society, vol. 90, no. 12, pp. 1865–1880, 2009.
[27]  G. J. Huffman, R. F. Adler, D. T. Bolvin et al., “The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales,” Journal of Hydrometeorology, vol. 8, no. 1, pp. 38–55, 2007.
[28]  B. Geiger, C. Meurey, D. Lajas, L. Franchistéguy, D. Carrer, and J. L. Roujean, “Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations,” Meteorological Applications, vol. 15, no. 3, pp. 411–420, 2008.
[29]  P. de Rosnay, M. Drusch, A. Boone et al., “AMMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM,” Journal of Geophysical Research D, vol. 114, no. 5, Article ID D05108, 2009.
[30]  M. Grippa, L. Kergoat, F. Frappart et al., “Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models,” Water Resources Research, vol. 47, no. 5, article W05549, 2011.
[31]  F. Timouk, L. Kergoat, E. Mougin et al., “Response of surface energy balance to water regime and vegetation development in a Sahelian landscape,” Journal of Hydrology, vol. 375, no. 1-2, pp. 178–189, 2009.
[32]  X. Gao and P. A. Dirmeyer, “A multimodel analysis, validation, and transferability study of global soil wetness products,” Journal of Hydrometeorology, vol. 7, no. 6, pp. 1218–1236, 2006.
[33]  A. A. Boone, I. Poccard-Leclercq, Y. Xue, J. Feng, and P. de Rosnay, “Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project,” Climate Dynamics, vol. 35, no. 1, pp. 127–142, 2010.
[34]  P. Tulet, M. Mallet, V. Pont, et al., “The 7–12 March dust storm over West Africa: mineral dust generation and vertical layering in the atmosphere,” Journal of Geophysical Research, vol. 113, article D00C08, 13 pages, 2008.
[35]  C. Kocha, J. P. Lafore, P. Tulet, and Y. Seity, “High-resolution simulation of a major West African dust-storm: comparison with observations and investigation of dust impact,” Quarterly Journal of the Royal Meteorological Society, vol. 138, no. 663, pp. 455–470, 2012.
[36]  C. Delon, C. Galy-Lacaux, A. Boone et al., “Atmospheric nitrogen budget in Sahelian dry savannas,” Atmospheric Chemistry and Physics, vol. 10, no. 6, pp. 2691–2708, 2010.
[37]  A. Agustí-Panareda, G. Balsamo, and A. Beljaars, “Impact of improved soil moisture on the ECMWF precipitation forecast in West Africa,” Geophysical Research Letters, vol. 37, no. 20, Article ID L20808, 2010.
[38]  F. Guichard, N. Asencio, C. Peugeot et al., “An intercomparison of simulated rainfall and evapotranspiration associated with a mesoscale convective system over West Africa,” Weather and Forecasting, vol. 25, no. 1, pp. 37–60, 2010.
[39]  A. L. Steiner, J. S. Pal, S. A. Rauscher et al., “Land surface coupling in regional climate simulations of the West African monsoon,” Climate Dynamics, vol. 33, no. 6, pp. 869–892, 2009.
[40]  F. Hourdin, F. Guichard, I. Musat et al., “AMMA-Model intercomparison project,” Bulletin of the American Meteorological Society, vol. 91, no. 1, pp. 95–104, 2010.
[41]  R. Meynadier, O. Bock, F. Guichard, A. Boone, P. Roucou, and J. L. Redelsperger, “West African Monsoon water cycle: 1. A hybrid water budget data set,” Journal of Geophysical Research D, vol. 115, no. 19, Article ID D19106, 2010.
[42]  Y. Xue, F. de Sales, W. K. M. Lau et al., “Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment,” Climate Dynamics, vol. 35, no. 1, pp. 3–27, 2010.
[43]  N. Martiny, Y. Richard, and P. Camberlin, “Interannual persistence effects in vegetation dynamics of semi-arid Africa,” Geophysical Research Letters, vol. 32, no. 24, Article ID L24403, 4 pages, 2005.
[44]  X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler, and Z. Liu, “Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments,” Journal of Geophysical Research D, vol. 110, no. 12, Article ID D12103, 14 pages, 2005.
[45]  Z. Liu, M. Notaro, J. Kutzbach, and N. Liu, “Assessing global vegetation-climate feedbacks from observations,” Journal of Climate, vol. 19, no. 5, pp. 787–814, 2006.
[46]  S. O. Los, G. P. Weedon, P. R. J. North, J. D. Kaduk, C. M. Taylor, and P. M. Cox, “An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel,” Geophysical Research Letters, vol. 33, no. 16, Article ID L16402, 2006.
[47]  X. Zeng, P. Rao, R. S. DeFries, and M. C. Hansen, “Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000,” Journal of Applied Meteorology, vol. 42, no. 10, pp. 1525–1530, 2003.
[48]  L. Jarlan, Y. M. Tourre, E. Mougin, N. Philippon, and P. Mazzega, “Dominant patterns of AVHRR NDVI interannual variability over the Sahel and linkages with key climate signals (1982–2003),” Geophysical Research Letters, vol. 32, no. 4, Article ID L04701, 4 pages, 2005.
[49]  N. Philippon, L. Jarlan, N. Martiny, P. Camberlin, and E. Mougin, “Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data,” Journal of Climate, vol. 20, no. 7, pp. 1202–1218, 2007.
[50]  L. Eklundh and L. Olsson, “Vegetation index trends for the African Sahel 1982–1999,” Geophysical Research Letters, vol. 30, no. 8, Article ID 1430, 4 pages, 2003.
[51]  Y. Govaerts and A. Lattanzio, “Estimation of surface albedo increase during the eighties Sahel drought from Meteosat observations,” Global and Planetary Change, vol. 64, no. 3-4, pp. 139–145, 2008.
[52]  P. Hiernaux, L. Diarra, V. Trichon, E. Mougin, N. Soumaguel, and F. Baup, “Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali),” Journal of Hydrology, vol. 375, no. 1-2, pp. 103–113, 2009.
[53]  R. D. Koster, P. A. Dirmeyer, Z. Guo et al., “Regions of strong coupling between soil moisture and precipitation,” Science, vol. 305, no. 5687, pp. 1138–1140, 2004.
[54]  H. Douville, F. Chauvin, and H. Broqua, “Influence of soil moisture on the Asian and African monsoons. Part I: mean monsoon and daily precipitation,” Journal of Climate, vol. 14, no. 11, pp. 2381–2403, 2001.
[55]  H. Douville, “Influence of soil moisture on the Asian and African monsoons. Part II: interannual variability,” Journal of Climate, vol. 15, no. 7, pp. 701–720, 2002.
[56]  P. A. Dirmeyer, A. J. Dolman, and N. Sato, “The pilot phase of the global soil wetness project,” Bulletin of the American Meteorological Society, vol. 80, no. 5, pp. 851–878, 1999.
[57]  M. Notaro, “Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models,” Journal of Geophysical Research D, vol. 113, no. 9, Article ID D09101, 2008.
[58]  N. Philippon and B. Fontaine, “The relationship between the Sahelian and previous 2nd Guinean rainy seasons: a monsoon regulation by soil wetness?” Annales Geophysicae, vol. 20, no. 4, pp. 575–582, 2002.
[59]  M. Shinoda and Y. Yamaguchi, “Influence of soil moisture anomaly on temperature in the Sahel: a comparison between wet and dry decades,” Journal of Hydrometeorology, vol. 4, no. 2, pp. 437–447, 2003.
[60]  H. Douville, S. Conil, S. Tyteca, and A. Voldoire, “Soil moisture memory and West African monsoon predictability: artefact or reality?” Climate Dynamics, vol. 28, no. 7-8, pp. 723–742, 2007.
[61]  B. J. J. M. van den Hurk and E. van Meijgaard, “Diagnosing land-atmosphere interaction from a regional climate model simulation over West Africa,” Journal of Hydrometeorology, vol. 11, no. 2, pp. 467–481, 2010.
[62]  Y. Xue, F. De Sales, R. Vasic, et al., “Global and temporal characteristics of seasonal climate/vegetation biophysical process (VBP) interactions,” Journal of Climate, vol. 23, pp. 1411–1433, 2010.
[63]  H. S. Kang, Y. Xue, and G. J. Collatz, “Impact assessment of satellite-derived leaf area index datasets using a general circulation model,” Journal of Climate, vol. 20, no. 6, pp. 993–1015, 2007.
[64]  Y. Xue, H. M. H. Juang, W. P. Li et al., “Role of land surface processes in monsoon development: East Asia and West Africa,” Journal of Geophysical Research D, vol. 109, no. 3, Article ID D03105, 24 pages, 2004.
[65]  C. M. Taylor, “Intraseasonal land-atmospheric coupling in the West African monsoon,” Journal of Climate, vol. 21, no. 24, pp. 6636–6648, 2008.
[66]  S. L. Lavender, C. M. Taylor, and A. J. Matthews, “Coupled land-atmosphere intraseasonal variability of the West African monsoon in a GCM,” Journal of Climate, vol. 23, no. 21, pp. 5557–5571, 2010.
[67]  K. H. Cook, “Generation of the African easterly jet and its role in determining West African precipitation,” Journal of Climate, vol. 12, no. 5, pp. 1165–1184, 1999.
[68]  C. D. Thorncroft and M. Blackburn, “Maintenance of the African easterly jet,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 555, pp. 763–786, 1999.
[69]  W. Li, Y. Xue, and I. Poccard, “Numerical investigation of the impact of vegetation indices on the variability of West African summer monsoon,” Journal of the Meteorological Society of Japan, vol. 85, pp. 363–383, 2007.
[70]  M. L. C. Wu, O. Reale, S. D. Schubert, M. J. Suarez, R. D. Koster, and P. J. Pegion, “African easterly jet: structure and maintenance,” Journal of Climate, vol. 22, no. 17, pp. 4459–4480, 2009.
[71]  S. D. Prince, Y. H. Kerr, J. P. Goutorbe et al., “Geographical, biological and remote sensing aspects of the hydrologic atmospheric pilot experiment in the Sahel (HAPEX-Sahel),” Remote Sensing of Environment, vol. 51, no. 1, pp. 215–234, 1995.
[72]  M. Kohler, N. Kalthoff, and C. Kottmeier, “The impact of soil moisture modifications on CBL characteristics in West Africa: a case-study from the AMMA campaign,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. 1, pp. 442–455, 2010.
[73]  C. M. Taylor, D. J. Parker, and P. P. Harris, “An observational case study of mesoscale atmospheric circulations induced by soil moisture,” Geophysical Research Letters, vol. 34, no. 15, Article ID L15801, 2007.
[74]  L. Garcia-Carreras, D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy, “Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer,” Journal of Geophysical Research D, vol. 115, no. 3, Article ID D03102, 2010.
[75]  M. A. Gaertner, M. Domínguez, and M. Garvert, “A modelling case-study of soil moisture-atmosphere coupling,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. 1, pp. 483–495, 2010.
[76]  L. Gantner and N. Kalthoff, “Sensitivity of a modelled life cycle of a mesoscale convective system to soil conditions over West Africa,” Quarterly Journal of the Royal Meteorological Society, vol. 136, no. 1, pp. 471–482, 2010.
[77]  C. M. Taylor, A. Gounou, F. Guichard et al., “Frequency of sahelian storm initiation enhanced over mesoscale soil-moisture patterns,” Nature Geoscience, vol. 4, no. 7, pp. 430–433, 2011.
[78]  C. M. Taylor, “Feedbacks on convection from an African wetland,” Geophysical Research Letters, vol. 37, article L05406, 2010.
[79]  H. F. Lamprey, “Report on the desert encroachment reconnaissance in northern Sudan,” Desertification Control Bulletin, vol. 17, pp. 1–7, 1988.
[80]  C. J. Tucker and S. E. Nicholson, “Variations in the size of the Sahara Desert from 1980 to 1997,” Ambio, vol. 28, no. 7, pp. 587–591, 1999.
[81]  A. J. Pitman, N. De Noblet-Ducoudré, F. T. Cruz et al., “Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study,” Geophysical Research Letters, vol. 36, no. 14, Article ID L14814, 2009.
[82]  H. E. Dregne and N. T. Chou, “Global desertification dimensions and costs,” in Degradation and Restoration of Arid Lands, pp. 249–282, Texas Tech University, 1992.
[83]  N. Middleton, The Global Casino. An Introduction to Environmental Issues, Arnold, 4th edition, 2008.
[84]  A. S. Goudie, The Human Impact on the Natural Environment, The MIT Press, 6th edition, 2006.
[85]  P. Hiernaux, A. Ayantunde, A. Kalilou et al., “Trends in productivity of crops, fallow and rangelands in Southwest Niger: impact of land use, management and variable rainfall,” Journal of Hydrology, vol. 375, no. 1-2, pp. 65–77, 2009.
[86]  G. C. Hurtt, S. Frolking, M. G. Fearon et al., “The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands,” Global Change Biology, vol. 12, no. 7, pp. 1208–1229, 2006.
[87]  T. Hickler, L. Eklundh, J. W. Seaquist et al., “Precipitation controls Sahel greening trend,” Geophysical Research Letters, vol. 32, no. 21, Article ID L21415, 4 pages, 2005.
[88]  C. Reij, G. Tappan, and A. Belemvire, “Changing land management practices and vegetation on the Central Plateau of Burkina Faso (1968–2002),” Journal of Arid Environments, vol. 63, no. 3, pp. 642–659, 2005.
[89]  T. d'Orgeval and J. Polcher, “Impacts of precipitation events and land-use changes on West African river discharges during the years 1951–2000,” Climate Dynamics, vol. 31, no. 2-3, pp. 249–262, 2008.
[90]  S. Rian, Y. Xue, G. M. MacDonald et al., “Analysis of climate and vegetation characteristics along the savanna-desert ecotone in mali using MODIS data,” GIScience and Remote Sensing, vol. 46, no. 4, pp. 424–450, 2009.
[91]  S. Levis, G. B. Bonan, and C. Bonfils, “Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model,” Climate Dynamics, vol. 23, no. 7-8, pp. 791–802, 2004.
[92]  M. Notaro, Y. Wang, Z. Liu, R. Gallimore, and S. Levis, “Combined statistical and dynamical assessment of simulated vegetation-rainfall interactions in North Africa during the mid-Holocene,” Global Change Biology, vol. 14, no. 2, pp. 347–368, 2008.
[93]  G. Wang, E. A. B. Eltahir, J. A. Foley, D. Pollard, and S. Levis, “Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere-biosphere model,” Climate Dynamics, vol. 22, no. 6-7, pp. 625–637, 2004.
[94]  G. Wang and E. A. B. Eltahir, “Impact of CO2 concentration changes on the biosphere-atmosphere system of West Africa,” Global Change Biology, vol. 8, no. 12, pp. 1169–1182, 2002.
[95]  C. A. Alo and G. Wang, “Role of dynamic vegetation in regional climate predictions over Western Africa,” Climate Dynamics, vol. 35, no. 5, pp. 907–922, 2010.
[96]  H. Paeth, K. Born, R. Girmes, R. Podzun, and D. Jacob, “Regional climate change in tropical and Northern Africa due to greenhouse forcing and land use changes,” Journal of Climate, vol. 22, no. 1, pp. 114–132, 2009.
[97]  A. Agustí-Panareda, G. Balsamo, and A. Beljaars, “Impact of improved soil moisture on the ECMWF precipitation forecast in West Africa,” Geophysical Research Letters, vol. 37, no. 20, Article ID L20808, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133