Large-Scale Measurements of Thermospheric Dynamics with a Multisite Fabry-Perot Interferometer Network: Overview of Plans and Results from Midlatitude Measurements
The North American Thermosphere Ionosphere Observing Network (NATION), comprising a new network of Fabry-Perot interferometers (FPIs), to be deployed in the Midwest of the United States of America is described. FPIs will initially be deployed to four sites to make coordinated measurements of the neutral winds and temperature in the Earth's thermosphere using measurements of the 630?nm redline emission. The observing strategy of the network will take into account local observing conditions, and common volume measurements from multiple sites will be made in order to estimate local vector wind quantities. The network described is expandable, and as additional FPI sites are installed in North America, or elsewhere, the goal of providing the upper atmospheric research community with a robust dataset of neutral winds and temperatures can be achieved. 1. Introduction The thermosphere is the crucial boundary between the Earth’s lower atmosphere and space. Low Earth orbiting satellites and other objects in the upper thermosphere are strongly affected by the lifting of the atmosphere that results from space weather heating events (e.g., [1–3]). In addition, space weather driven by thermospheric dynamics can cause important degradations in engineering capabilities society depends on, such as the accuracy and availability of Global Navigation Satellite Systems (GNSS) and radio transmissions (e.g., [4–7]). Empirical models, such as the Horizontal Wind Model (HWM07, [8]) and NRLMSISE-00 [9], are useful in providing general climatologies of thermospheric parameters, but fall short in providing a realistic representation of the neutral dynamics that can be applied to space weather forecasting. To help improve our understanding of the thermosphere/ionosphere (TI) system and its role in the bigger picture of the geospace system, understanding of the various pathways of energy transfer within the geospace system needs to be improved. These pathways include the transfer of energy from the ground into the upper atmosphere by means of waves of various scales including gravity, tidal, and planetary waves; space downward into the upper atmosphere through the absorption of solar energy or modification of global electric and magnetic fields during geomagnetic storm activity; and the polar or equatorial regions toward the midlatitudes by traveling atmospheric disturbances (TADs) as well as tidal and planetary wave dynamics. There are considerable challenges in being able to fully understand, much less simulate in real time, these complex physical processes of the
References
[1]
S. Bruinsma, J. M. Forbes, R. S. Nerem, and X. Zhang, “Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data,” Journal of Geophysical Research, vol. 111, no. A06303, 2006.
[2]
T. J. Fuller-Rowell, M. V. Codrescu, R. J. Moffett, and S. Quegan, “Response of the thermosphere and ionosphere to geomagnetic storms,” Journal of Geophysical Research, vol. 99, no. A3, pp. 3893–3914, 1994.
[3]
G. W. Pr?lss, “Space weather effects in the upper atmosphere: low and middle latitudes,” in Space Weather: The Physics Behind a Slogan, K. Scherer, H. Fichter, and B. Herber, Eds., vol. 656 of Lecture Notes in Physics, Springer, Berlin, Germany, 2004.
[4]
S. Basu, S. Basu, C. E. Valladares et al., “Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes,” Journal of Geophysical Research, vol. 106, no. A12, pp. 30,389–30,413, 2001.
[5]
R. L. Lambour, A. J. Coster, R. Clouser, L. E. Thornton, J. Sharma, and T. A. Cott, “Operational impacts of space weather,” Geophysical Research Letters, vol. 30, no. 3, p. 1136, 2003.
[6]
R. M. Jadav, K. N. Iyer, H. P. Joshi, and H. O. Vats, “Coronal mass ejection of 4 April 2000 and associated space weather effects,” Planetary and Space Science, vol. 53, no. 6, pp. 671–679, 2005.
[7]
J. J. Makela, M. C. Kelley, and M. J. Nicolls, “Optical observations of the development of secondary instabilities on the eastern wall of an equatorial plasma bubble,” Journal of Geophysical Research, vol. 111, no. A09311, 2006.
[8]
D. P. Drob, J. T. Emmert, G. Crowley, et al., “An empirical model of the Earth's horizontal wind fields: HWM07,” Journal of Geophysical Research, vol. 113, no. A12304, 2008.
[9]
J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues,” Journal of Geophysical Research, vol. 107, no. 1468, 2002.
[10]
N. W. Spencer, L. E. Wharton, G. R. Carignan, and J. C. Maurer, “Thermosphere zonal winds—vertical motions and temperature as measured from Dynamics Explorer,” Geophysical Research Letters, vol. 9, no. 9, pp. 953–956, 1982.
[11]
A. E. Hedin, E. L. Fleming, A. H. Manson et al., “Empirical wind model for the upper, middle and lower atmosphere,” Journal of Atmospheric and Terrestrial Physics, vol. 58, no. 13, pp. 1421–1447, 1996.
[12]
J. T. Emmert, M. L. Faivre, G. Hernandez et al., “Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence,” Journal of Geophysical Research, vol. 111, no. A12302, 2006.
[13]
J. T. Emmert, G. Hernandez, M. J. Jarvis, R. J. Niciejewski, D. P. Sipler, and S. Vennerstrom, “Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. High-latitude circulation and interplanetary magnetic field dependence,” Journal of Geophysical Research, vol. 111, no. A12303, 2006.
[14]
J. W. Meriwether, “Studies of thermospheric dynamics with a Fabry-Perot interferometer network: a review,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 13, pp. 1576–1589, 2006.
[15]
G. Crowley, B. A. Emery, R. G. Roble, H. C. Carlson Jr., and J. E. Salah, “Thermospheric dynamics during September 18-19, 1984. II—validation of the NCAR thermospheric general circulation model,” Journal of Geophysical Research, vol. 94, no. A12, pp. 16,945–16,959, 1989.
[16]
M. J. Buonsanto, M. Codrescu, B. A. Emery et al., “Comparison of models and measurements at Millstone Hill during the January 24–26, 1993, minor storm interval,” Journal of Geophysical Research, vol. 102, no. A4, pp. 7267–7278, 1997.
[17]
R. W. Smith, G. Hernandez, R. G. Roble et al., “Observation and simulations of winds and temperatures in the Antarctic thermosphere for August 2–10, 1992,” Journal of Geophysical Research, vol. 103, no. A5, pp. 9473–9480, 1998.
[18]
P. B. Hays and R. G. Roble, “Direct observations of thermospheric winds during geomagnetic storms,” Journal of Geophysical Research, vol. 76, no. 22, pp. 5316–5321, 1971.
[19]
M. A. Biondi and W. A. Feibelman, “Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation,” Planetary and Space Science, vol. 16, no. 4, pp. 431–443, 1968.
[20]
G. Hernandez and R. G. Roble, “Direct measurements of nighttime thermospheric winds and temperatures,1 , seasonal variations during geomagnetic quiet periods,” Journal of Geophysical Research, vol. 81, no. 13, pp. 2065–2074, 1976.
[21]
G. Hernandez and R. G. Roble, “Direct measurements of nighttime thermospheric winds and temperatures, 2 , geomagnetic storms,” Journal of Geophysical Research, vol. 81, no. 28, pp. 5173–5181, 1976.
[22]
G. Hernandez and R. G. Roble, “Direct measurements of nighttime thermospheric winds and temperatures, 3, monthly variations during solar minimum,” Journal of Geophysical Research, vol. 82, no. 35, pp. 5505–5511, 1977.
[23]
G. Hernandez and R. G. Roble, “The geomagnetic quiet nighttime thermospheric wind pattern over Fritz Peak Observatory during solar cycle minimum and maximum,” Journal of Geophysical Research, vol. 89, no. 1, pp. 327–337, 1984.
[24]
D. P. Sipler, B. B. Luokkala, and M. A. Biondi, “Fabry-Perot determinations of midlatitude F-region neutral winds and temperatures from 1975 to 1979,” Planetary and Space Science, vol. 30, no. 10, pp. 1025–1032, 1982.
[25]
G. Hernandez and R. G. Roble, “Thermospheric nighttime neutral temperature and winds over Fritz Peak Observatory: observed and calculated solar cycle variation,” Journal of Geophysical Research, vol. 100, no. A8, pp. 14,647–14,659, 1995.
[26]
J. T. Emmert, B. G. Fejer, and D. P. Sipler, “Climatology and latitudinal gradients of quiet time thermospheric neutral winds over Millstone Hill from Fabry-Perot interferometer measurements,” Journal of Geophysical Research, vol. 108, no. 1196, 2003.
[27]
B. G. Fejer, J. T. Emmert, and D. P. Sipler, “Climatology and storm time dependence of nighttime thermospheric neutral winds over Millstone Hill,” Journal of Geophysical Research, vol. 107, no. 1052, 2002.
[28]
J. W. Meriwether, J. J. Makela, Y. Huang et al., “Climatology of the nighttime equatorial thermospheric winds and temperatures over Brazil near solar minimum,” Journal of Geophysical Research, vol. 116, no. A04322, 2011.
[29]
J. J. Makela, J. W. Meriwether, Y. Huang, and P. J. Sherwood, “Simulation and analysis of a multi-order imaging Fabry-Perot interferometer for the study of thermospheric winds and temperatures,” Applied Optics, vol. 50, no. 22, pp. 4403–4416, 2011.
[30]
G. Hernandez, “The signature profiles of O(1S) In the airglow,” Planetary and Space Science, vol. 19, no. 5, pp. 467–476, 1971.
[31]
A. L. Aruliah, E. M. Griffin, A. D. Aylward et al., “First direct evidence of meso-scale variability on ion-neutral dynamics using co-located tristatic FPIs and EISCAT radar in Northern Scandinavia,” Annales Geophysicae, vol. 23, no. 1, pp. 147–162, 2005.