全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protein-Protein Interactions Inferred from Domain-Domain Interactions in Genogroup II Genotype 4 Norovirus Sequences

DOI: 10.1155/2013/456356

Full-Text   Cite this paper   Add to My Lib

Abstract:

Severe gastroenteritis and foodborne illness caused by Noroviruses (NoVs) during the winter are a worldwide phenomenon. Vulnerable populations including young children and elderly and immunocompromised people often require hospitalization and may die. However, no efficient vaccine for NoVs exists because of their variable genome sequences. This study investigates the infection processes in protein-protein interactions between hosts and NoVs. Protein-protein interactions were collected from related Pfam NoV domains. The related Pfam domains were accumulated incrementally from the protein domain interaction database. To examine the influence of domain intimacy, the 7?NoV domains were grouped by depth. The number of domain-domain interactions increased exponentially as the depth increased. Many protein-protein interactions were relevant; therefore, cloud techniques were used to analyze data because of their computational capacity. The infection relationship between hosts and NoVs should be used in clinical applications and drug design. 1. Introduction Gastroenteritis and foodborne illness epidemics usually occur during the winter. In 1968, an acute gastroenteritis outbreak occurred at an elementary school in Norwalk, OH, USA [1]. Kapikian et al. used immune electron microscopy and an infectious stool filtrate to observe the virus particles and identified them as small round-structured viruses [2]. The nonbacterial pathogen was called the Norwalk virus after the outbreak region and renamed the Norovirus (NoV) at the International Congress of Virology in Paris in 2002. The NoV is the species of the genus of Norwalk-like viruses in the Caliciviridae family. The NoV consists of a positive-sense, single-strand RNA (ssRNA) genome sequence of approximately 7.5?kb with 3 open reading frames (ORFs) [3]. The first open reading frame (ORF1) contains approximately 5?kb of sequences, which may enable 195?kDa polyproteins to support virus duplication. During the duplication phase, polyproteins are divided into at least 6 nonstructural proteins, such as p48, nucleotide triphosphatase (NTPase), p22, Vpg, proteinase, and RNA-dependent RNA polymerase [4–6]. ORF2 is approximately 1.8?kb long, which may transform into 60?kDa major structural protein VP1 with the following functions: self-assembly and capsid formation, receptor recognition, host specificity, strain diversity, and immunogenicity [7]. ORF3 consists of 0.6?kb nucleotides, which may translate into a 20?kDa minor structural protein (VP2), which facilitates the expression and stability of major structural protein

References

[1]  J. L. Adler and R. Zickl, “Winter vomiting disease,” Journal of Infectious Diseases, vol. 119, no. 6, pp. 668–673, 1969.
[2]  A. Z. Kapikian, R. G. Wyatt, R. Dolin, T. S. Thornhill, A. R. Kalica, and R. M. Chanock, “Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis,” Journal of Virology, vol. 10, no. 5, pp. 1075–1081, 1972.
[3]  X. Jiang, J. Wang, D. Y. Graham, and M. K. Estes, “Detection of Norwalk virus in stool by polymerase chain reaction,” Journal of Clinical Microbiology, vol. 30, no. 10, pp. 2529–2534, 1992.
[4]  A. Scipioni, A. Mauroy, J. Vinjé, and E. Thiry, “Animal noroviruses,” Veterinary Journal, vol. 178, no. 1, pp. 32–45, 2008.
[5]  G. Belliot, S. V. Sosnovtsev, T. Mitra, C. Hammer, M. Garfield, and K. Y. Green, “In vitro proteolytic processing of the MD145 Norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells,” Journal of Virology, vol. 77, no. 20, pp. 10957–10974, 2003.
[6]  M. E. Hardy, “Norovirus protein structure and function,” FEMS Microbiology Letters, vol. 253, no. 1, pp. 1–8, 2005.
[7]  R. Chen, J. D. Neill, J. S. Noel et al., “Inter- and intragenus structural variations in caliciviruses and their functional implications,” Journal of Virology, vol. 78, no. 12, pp. 6469–6479, 2004.
[8]  A. Bertolotti-Ciarlet, S. E. Crawford, A. M. Hutson, and M. K. Estes, “The 3' end of norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid Protein VP1: a novel function for the VP2 protein,” Journal of Virology, vol. 77, no. 21, pp. 11603–11615, 2003.
[9]  B. V. V. Prasad, M. E. Hardy, T. Dokland, J. Bella, M. G. Rossmann, and M. K. Estes, “X-ray crystallographic structure of the Norwalk virus capsid,” Science, vol. 286, no. 5438, pp. 287–290, 1999.
[10]  E. Duizer, K. J. Schwab, F. H. Neill, R. L. Atmar, M. P. G. Koopmans, and M. K. Estes, “Laboratory efforts to cultivate noroviruses,” Journal of General Virology, vol. 85, no. 1, pp. 79–87, 2004.
[11]  T. Ando, J. S. Noel, and R. L. Fankhauser, “Genetic classification of 'Norwalk-like viruses',” Journal of Infectious Diseases, vol. 181, no. 2, pp. S336–S348, 2000.
[12]  M. Koopmans, C. H. Von Bonsdorff, J. Vinjé, D. De Medici, and S. Monroe, “Foodborne viruses,” FEMS Microbiology Reviews, vol. 26, no. 2, pp. 187–205, 2002.
[13]  S. M. Karst, C. E. Wobus, M. Lay, J. Davidson, and H. W. Virgin, “STAT1-dependent innate immunity to a norwalk-like virus,” Science, vol. 299, no. 5612, pp. 1575–1578, 2003.
[14]  P. Suravajhala and V. S. Sundararajan, “A classification scoring schema to validate protein interactors,” Bioinformation, vol. 8, no. 1, pp. 34–39, 2012.
[15]  E. L. L. Sonnhammer, S. R. Eddy, and R. Durbin, “Pfam: a comprehensive database of protein domain families based on seed alignments,” Proteins-Structure Function and Genetics, vol. 28, no. 3, pp. 405–420, 1997.
[16]  S. Yellaboina, A. Tasneem, D. V. Zaykin, B. Raghavachari, and R. Jothi, “DOMINE: A comprehensive collection of known and predicted domain-domain interactions,” Nucleic Acids Research, vol. 39, no. 1, pp. D730–D735, 2011.
[17]  M. Magrane and U. Consortium, “UniProt Knowledgebase: a hub of integrated protein data,” The Journal of Biological Databases and Curation, vol. 2011, 2011.
[18]  R. Apweiler, T. K. Attwood, A. Bairoch et al., “The InterPro database, an integrated documentation resource for protein families, domains and functional sites,” Nucleic Acids Research, vol. 29, no. 1, pp. 37–40, 2001.
[19]  A. Ceol, A. Chatr Aryamontri, L. Licata et al., “MINT, the molecular interaction database: 2009 update,” Nucleic Acids Research, vol. 38, no. 1, pp. D532–D539, 2009.
[20]  M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker, “Cytoscape 2.8: new features for data integration and network visualization,” Bioinformatics, vol. 27, no. 3, pp. 431–432, 2011.
[21]  C. Chothia, J. Gough, C. Vogel, and S. A. Teichmann, “Evolution of the protein repertoire,” Science, vol. 300, no. 5626, pp. 1701–1703, 2003.
[22]  B. Rost, J. Liu, R. Nair, K. O. Wrzeszczynski, and Y. Ofran, “Automatic prediction of protein function,” Cellular and Molecular Life Sciences, vol. 60, no. 12, pp. 2637–2650, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133