全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Transcriptional Profiling of Two Contrasting Barley Genotypes under Salinity Stress during the Seedling Stage

DOI: 10.1155/2013/972852

Full-Text   Cite this paper   Add to My Lib

Abstract:

Salinity is one of the major abiotic stresses that affect crop productivity. Identification of the potential novel genes responsible for salt tolerance in barley will contribute to understanding the molecular mechanism of barley responses to salt stress. We compared changes in transcriptome between Hua 11 (a salt-tolerant genotype) and Hua 30 (a salt sensitive genotype) in response to salt stress at the seedling stage using barley cDNA microarrays. In total, 557 and 247 salt-responsive genes were expressed exclusively in the shoot and root tissue of the salt-tolerant genotype, respectively. Among these genes, a number of signal-related genes, transcription factors and compatible solutes were identified and some of these genes were carefully discussed. Notably, a LysM RLK was firstly found involved in salt stress response. Moreover, key enzymes in the pathways of jasmonic acid biosynthesis, lipid metabolism and indole-3-acetic acid homeostasis were specifically affected by salt stress in salt tolerance genotype. These salt-responsive genes and biochemical pathways identified in this study could provide further information for understanding the mechanisms of salt tolerance in barley. 1. Introduction Due to various biotic and abiotic stress factors under field conditions, crop plant yield reduction can reach more than 50% [1]. Among these abiotic stresses, salinity is the most severe environmental stress affecting more than 800 million hectares of land throughout the world [2, 3]. Unsuitable irrigation was the most significant reason leading to cultivated agricultural land salinization [4]. With the constantly growing world population, the demands for food are increasing rapidly, so it is an important global priority to improve the salt tolerance of crops [3]. The discovery of novel genes, the analysis of their expression patterns in response to salt stress, and the determination of their potential functions in salt stress adaptation will provide the basis of effective engineering strategies to enhance crop salt stress tolerance [5]. To cope with the detrimental effects of various abiotic stresses, crops have evolved many mechanisms to increase their tolerance, including physical adaptations, and interactive molecular and cellular changes [6]. The crops can switch on these mechanisms through a signal transduction pathway when they perceive environmental stress [7, 8]. Understanding the mechanisms of signal transduction is not only of fundamental importance to biology but also essential for the continued development of rational breeding and transgenic

References

[1]  S. Vij and A. K. Tyagi, “Emerging trends in the functional genomics of the abiotic stress response in crop plants: review article,” Plant Biotechnology Journal, vol. 5, no. 3, pp. 361–380, 2007.
[2]  R. Munns, “Genes and salt tolerance: bringing them together,” New Phytologist, vol. 167, no. 3, pp. 645–663, 2005.
[3]  K. Witzel, A. Weidner, G. K. Surabhi, A. B?rner, and H. P. Mock, “Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity,” Journal of Experimental Botany, vol. 60, no. 12, pp. 3545–3557, 2009.
[4]  R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008.
[5]  J. C. Cushman and H. J. Bohnert, “Genomic approaches to plant stress tolerance,” Current Opinion in Plant Biology, vol. 3, no. 2, pp. 117–124, 2000.
[6]  H. Knight and M. R. Knight, “Abiotic stress signalling pathways: specificity and cross-talk,” Trends in Plant Science, vol. 6, no. 6, pp. 262–267, 2001.
[7]  L. Xiong, K. S. Schumaker, and J. K. Zhu, “Cell signaling during cold, drought, and salt stress,” Plant Cell, vol. 14, pp. S165–S183, 2002.
[8]  S. Mahajan and N. Tuteja, “Cold, salinity and drought stresses: an overview,” Archives of Biochemistry and Biophysics, vol. 444, no. 2, pp. 139–158, 2005.
[9]  J. K. Zhu, J. Liu, and L. Xiong, “Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition,” Plant Cell, vol. 10, no. 7, pp. 1181–1191, 1998.
[10]  J. K. Zhu, “Regulation of ion homeostasis under salt stress,” Current Opinion in Plant Biology, vol. 6, no. 5, pp. 441–445, 2003.
[11]  A. A. Ludwig, T. Romeis, and J. D. G. Jones, “CDPK-mediated signalling pathways: specificity and cross-talk,” Journal of Experimental Botany, vol. 55, no. 395, pp. 181–188, 2004.
[12]  H. Nakagami, A. Pitzschke, and H. Hirt, “Emerging MAP kinase pathways in plant stress signalling,” Trends in Plant Science, vol. 10, no. 7, pp. 339–346, 2005.
[13]  E. W. Chehab, J. V. Perea, B. Gopalan, S. Theg, and K. Dehesh, “Oxylipin pathway in rice and arabidopsis,” Journal of Integrative Plant Biology, vol. 49, no. 1, pp. 43–51, 2007.
[14]  J. X. Liu, R. Srivastava, P. Che, and S. H. Howell, “Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling,” Plant Journal, vol. 51, no. 5, pp. 897–909, 2007.
[15]  S. Ma, Q. Gong, and H. J. Bohnert, “Dissecting salt stress pathways,” Journal of Experimental Botany, vol. 57, no. 5, pp. 1097–1107, 2006.
[16]  M. Fujita, Y. Fujita, Y. Noutoshi et al., “Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks,” Current Opinion in Plant Biology, vol. 9, no. 4, pp. 436–442, 2006.
[17]  L. Xiong and J. K. Zhu, “Molecular and genetic aspects of plant responses to osmotic stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 131–139, 2002.
[18]  M. R. Junttila, S. P. Li, and J. Westermarck, “Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival,” FASEB Journal, vol. 22, no. 4, pp. 954–965, 2008.
[19]  A. A. Ludwig, H. Saitoh, G. Felix et al., “Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10736–10741, 2005.
[20]  N. Tuteja, “Abscisic acid and abiotic stress signaling,” Plant Signaling and Behavior, vol. 2, no. 3, pp. 135–138, 2007.
[21]  N. Katerji, J. W. van Hoorn, A. Hamdy et al., “Classification and salt tolerance analysis of barley varieties,” Agricultural Water Management, vol. 85, no. 1-2, pp. 184–192, 2006.
[22]  B. O. Bengtsson, “Barley genetics–not only here for the beer,” Trends in Genetics, vol. 8, no. 1, pp. 3–5, 1992.
[23]  A. A. Jaradat, M. Shahid, and A. Al-Maskri, “Genetic diversity in the Batini barley landrace from Oman: II. Response to salinity stress,” Crop Science, vol. 44, no. 3, pp. 997–1007, 2004.
[24]  H. Walia, C. Wilson, A. Wahid, P. Condamine, X. Cui, and T. J. Close, “Expression analysis of barley (Hordeum vulgare L.) during salinity stress,” Functional and Integrative Genomics, vol. 6, no. 2, pp. 143–156, 2006.
[25]  A. M. Attumi, A study of salt tolerance in Arabidopsis thaliana and Hordeum vulgare [Ph.D. thesis], Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK, 2007.
[26]  S. Kogenaru, Y. Qing, Y. P. Guo, and N. A. Wang, “RNA-seq and microarray complement each other in transcriptome profiling,” BMC Genomics, vol. 13, p. 629, 2012.
[27]  H. Walia, C. Wilson, P. Condamine et al., “Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise,” BMC Genomics, vol. 8, article 87, 2007.
[28]  H. Walia, C. Wilson, A. M. Ismail, T. J. Close, and X. Cui, “Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress,” BMC Genomics, vol. 10, article 1471, p. 398, 2009.
[29]  R. J. Lu, Z. W. Chen, T. He et al., “Relationship of NaCl tolerance between haploid cell level and plant level in two barely cultivars,” Journal of Nuclear Agricultural Sciences, vol. 25, no. 2, pp. 226–230, 2011.
[30]  S. P. Lang and R. J. Lu, “Comparative study on salt tolerance of barley cultivars (lines) at seed germination stage,” Acta Agriculturae Shanghai, vol. 24, no. 4, pp. 83–87, 2008.
[31]  Z. Z. Du, L. Zhou, Y. M. Zhang, Z. W. Chen, T. He, and J. H. Huang, “Effects of NaCl treatments on the growth quantity and physiological and biochemical indexes of barley after seed germination,” Acta Agriculturae Shanghai, vol. 26, no. 2, pp. 34–37, 2010.
[32]  X. Zhang, J. Zhen, Z. Li et al., “Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.),” Plant Molecular Biology Reporter, vol. 29, no. 3, pp. 626–637, 2011.
[33]  A. Ueda, A. Kathiresan, J. Bennett, and T. Takabe, “Comparative transcriptome analyses of barley and rice under salt stress,” Theoretical and Applied Genetics, vol. 112, no. 7, pp. 1286–1294, 2006.
[34]  Z. N. Ozturk, V. Talamé, M. Deyholos et al., “Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley,” Plant Molecular Biology, vol. 48, no. 5-6, pp. 551–573, 2002.
[35]  J. J. Evans and N. A. Alldridge, “The distribution of peroxidases in extreme dwarf and normal tomato,” Phytochemistry, vol. 4, no. 3, pp. 499–503, 1965.
[36]  M. J. Droillard, A. Paulin, and J. C. Marrot, “Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus),” Physiologia Plantarum, vol. 71, pp. 197–202, 1987.
[37]  L. Cheng, F. Wang, H. Shou et al., “Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice,” Plant Physiology, vol. 145, no. 4, pp. 1647–1657, 2007.
[38]  Y. Benjamini and Y. Hochberg, “Controlling false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, pp. 289–300, 1995.
[39]  R. Mittler, S. Vanderauwera, M. Gollery, and F. Van Breusegem, “Reactive oxygen gene network of plants,” Trends in Plant Science, vol. 9, no. 10, pp. 490–498, 2004.
[40]  S. S. Gill and N. Tuteja, “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants,” Plant Physiology and Biochemistry, vol. 48, no. 12, pp. 909–930, 2010.
[41]  O. Cotsaftis, D. Plett, A. A. T. Johnson et al., “Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress,” Molecular Plant, vol. 4, no. 1, pp. 25–41, 2011.
[42]  H. Walia, C. Wilson, P. Condamine et al., “Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage,” Plant Physiology, vol. 139, no. 2, pp. 822–835, 2005.
[43]  E. Mangelsen, J. Kilian, K. Harter, C. Jansson, D. Wanke, and E. Sundberg, “Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis,” Molecular Plant, vol. 4, no. 1, pp. 97–115, 2011.
[44]  L. Xiong and M. Ishitani, “Stress signal transduction: components, pathways and network integration,” in Abiotic Stress Tolerance in Plants, A. K. Rai and T. Takabe, Eds., pp. 3–29, Springer, Dordrecht, The Netherlands, 2006.
[45]  S. Q. Ouyang, Y. F. Liu, P. Liu et al., “Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants,” Plant Journal, vol. 62, no. 2, pp. 316–329, 2010.
[46]  S. A. Morillo and F. E. Tax, “Functional analysis of receptor-like kinases in monocots and dicots,” Current Opinion in Plant Biology, vol. 9, no. 5, pp. 460–469, 2006.
[47]  T. Wu, Z. Tian, J. Liu, and C. Xie, “A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses,” Molecular Biology Reports, vol. 36, no. 8, pp. 2365–2374, 2009.
[48]  S. W. Hong, J. H. Jon, J. M. Kwak, and H. G. Nam, “Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana,” Plant Physiology, vol. 113, no. 4, pp. 1203–1212, 1997.
[49]  R. Karlova, S. Boeren, E. Russinova, J. Aker, J. Vervoort, and S. De Vries, “The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassinosteroid-insensitive 1,” Plant Cell, vol. 18, no. 3, pp. 626–638, 2006.
[50]  M. O. Santos and F. L. Arag?o, “Role of SERK genes in plant environmental response,” Plant Signaling & Behavior, vol. 4, no. 12, pp. 1111–1113, 2009.
[51]  M. Sivaguru, B. Ezaki, Z. H. He et al., “Aluminum induced gene expression and protein localization of a cell wall-associated receptor protein kinase in Arabidopsis thaliana,” Plant Physiology, vol. 132, no. 4, pp. 2256–2266, 2003.
[52]  V. Kanneganti and A. K. Gupta, “Wall associated kinases from plants—an overview,” Physiology and Molecular Biology of Plants, vol. 14, no. 1-2, pp. 109–118, 2008.
[53]  X. Hou, H. Tong, J. Selby, J. DeWitt, X. Peng, and Z. H. He, “Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses,” Plant Physiology, vol. 139, no. 4, pp. 1704–1716, 2005.
[54]  J. Wan, X. C. Zhang, D. Neece et al., “A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis,” Plant Cell, vol. 20, no. 2, pp. 471–481, 2008.
[55]  P. Gong, J. Zhang, H. Li et al., “Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato,” Journal of Experimental Botany, vol. 61, no. 13, pp. 3563–3575, 2010.
[56]  O. ?amajová, O. Plíhal, M. Al-Yousif, H. Hirt, and J. ?amaj, “Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases,” Biotechnology Advances, vol. 31, no. 1, pp. 118–128, 2013.
[57]  J. J. Rudd and V. E. Franklin-Tong, “Calcium signaling in plants,” Cellular and Molecular Life Sciences, vol. 55, no. 2, pp. 214–232, 1999.
[58]  J. J. Rudd and V. E. Franklin-Tong, “Unravelling response-specificity in Ca2+ signalling pathways in plant cells,” New Phytologist, vol. 151, no. 1, pp. 7–33, 2001.
[59]  D. Sanders, C. Brownlee, and J. F. Harper, “Communicating with calcium,” Plant Cell, vol. 11, no. 4, pp. 691–706, 1999.
[60]  R. F. Li, J. W. Zhang, J. H. Wei, H. Z. Wang, Y. Z. Wang, and R. C. Ma, “Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress,” Progress in Natural Science, vol. 19, no. 6, pp. 667–676, 2009.
[61]  Y. Jiang and M. K. Deyholos, “Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes,” BMC Plant Biology, vol. 6, article 25, 2006.
[62]  M. K. Rai, R. K. Kalia, R. Singh, M. P. Gangola, and A. K. Dhawan, “Developing stress tolerant plants through in vitro selection-an overview of the recent progress,” Environmental and Experimental Botany, vol. 71, no. 1, pp. 89–98, 2011.
[63]  M. Mazid, T. A. Khan, and F. Mohammad, “Role of secondary metabolites in defense mechanisms of plants,” Biology and Medicine, vol. 3, no. 2, pp. 232–249, 2011.
[64]  P. L. Rodriguez, “Protein phosphatase 2C (PP2C) function in higher plants,” Plant Molecular Biology, vol. 38, no. 6, pp. 919–927, 1998.
[65]  J. M. Pardo, M. P. Reddy, S. Yang et al., “Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9681–9686, 1998.
[66]  A. Schweighofer, H. Hirt, and I. Meskiene, “Plant PP2C phosphatases: emerging functions in stress signaling,” Trends in Plant Science, vol. 9, no. 5, pp. 236–243, 2004.
[67]  Q. Xu, H. H. Fu, R. Gupta, and S. Luan, “Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis,” Plant Cell, vol. 10, no. 5, pp. 849–857, 1998.
[68]  K. Cho, Y. C. Kim, J. C. Woo et al., “Transgenic expression of dual positional maize lipoxygenase-1 leads to the regulation of defense-related signaling molecules and activation of the anti-oxidative enzyme system in rice,” Plant Science, vol. 185-186, pp. 238–245, 2012.
[69]  M. P. Rodríguez-Rosales, L. Kerkeb, P. Bueno, and J. P. Donaire, “Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum. Mill) calli,” Plant Science, vol. 143, no. 2, pp. 143–150, 1999.
[70]  A. Moons, E. Prinsen, G. Bauw, and M. Van Montagu, “Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots,” Plant Cell, vol. 9, no. 12, pp. 2243–2259, 1997.
[71]  X. Y. Yang, J. X. Xie, X. P. Lu, Y. Z. Liu, and S. A. Peng, “Isolation of a citrus ethylene-responsive element binding factor gene and its expression in response to abiotic stress, girdling and shading,” Scientia Horticulturae, vol. 127, no. 3, pp. 275–281, 2011.
[72]  Z. Mytinová, V. Motyka, D. Haisel et al., “Antioxidant enzymatic protection during tobacco leaf ageing is affected by cytokinin depletion,” Plant Growth Regulation, vol. 65, pp. 23–34, 2011.
[73]  L. G. Chen, Y. Song, S. J. Li, L. P. Zhang, C. S. Zou, and D. Q. Yu, “The role of WRKY transcription factors in plant abiotic stresses,” Biochimica et Biophysica Acta, vol. 1819, pp. 120–128, 2012.
[74]  K. B. Singh, R. C. Foley, and L. O?ate-Sánchez, “Transcription factors in plant defense and stress responses,” Current Opinion in Plant Biology, vol. 5, pp. 430–436, 2002.
[75]  H. Ye, H. Du, N. Tang, X. Li, and L. Xiong, “Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice,” Plant Molecular Biology, vol. 71, no. 3, pp. 291–305, 2009.
[76]  S. P. Pandey and I. E. Somssich, “The role of WRKY transcription factors in plant immunity,” Plant Physiology, vol. 150, no. 4, pp. 1648–1655, 2009.
[77]  P. J. Rushton, I. E. Somssich, P. Ringler, and Q. J. Shen, “WRKY transcription factors,” Trends in Plant Science, vol. 15, no. 5, pp. 247–258, 2010.
[78]  D. Kizis, V. Lumbreras, and M. Pagès, “Role of AP2/EREBP transcription factors in gene regulation during abiotic stress,” FEBS Letters, vol. 498, no. 2-3, pp. 187–189, 2001.
[79]  J. Kim and H. Y. Kim, “Molecular characterization of a bHLH transcription factor involved in Arabidopsis abscisic acid-mediated response,” Biochimica et Biophysica Acta, vol. 1759, no. 3-4, pp. 191–194, 2006.
[80]  J. Zhou, F. Li, J. L. Wang, Y. Ma, K. Chong, and Y. Y. Xu, “Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis,” Journal of Plant Physiology, vol. 166, no. 12, pp. 1296–1306, 2009.
[81]  K. Nakashima, H. Takasaki, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki, “NAC transcription factors in plant abiotic stress responses,” Biochimica et Biophysica Acta, vol. 1819, pp. 97–103, 2012.
[82]  D. Desveaux, R. Subramaniam, C. Després et al., “A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis,” Developmental Cell, vol. 6, no. 2, pp. 229–240, 2004.
[83]  K. Yamaguchi-Shinozaki and K. Shinozaki, “Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters,” Trends in Plant Science, vol. 10, no. 2, pp. 88–94, 2005.
[84]  Y. Ito, K. Katsura, K. Maruyama et al., “Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice,” Plant and Cell Physiology, vol. 47, no. 1, pp. 141–153, 2006.
[85]  A. Agalou, S. Purwantomo, E. ?vern?s et al., “A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members,” Plant Molecular Biology, vol. 66, no. 1-2, pp. 87–103, 2008.
[86]  K. Sumithra, P. P. Jutur, B. D. Carmel, and A. R. Reddy, “Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism,” Plant Growth Regulation, vol. 50, no. 1, pp. 11–22, 2006.
[87]  I. Türkan and T. Demiral, “Recent developments in understanding salinity tolerance,” Environmental and Experimental Botany, vol. 67, pp. 2–9, 2009.
[88]  C. Wasternack and E. Kombrink, “Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development,” ACS Chemical Biology, vol. 5, no. 1, pp. 63–77, 2010.
[89]  T. Nishiuchi and K. Iba, “Roles of plastid ω-3 fatty acid desaturases in defense response of higher plants,” Journal of Plant Research, vol. 111, no. 1104, pp. 481–486, 1998.
[90]  M. Stumpe, J. G. Carsjens, I. Stenzel et al., “Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula,” Phytochemistry, vol. 66, no. 7, pp. 781–791, 2005.
[91]  D. J. Kang, Y. J. Seo, J. D. Lee et al., “Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars,” Journal of Agronomy and Crop Science, vol. 191, no. 4, pp. 273–282, 2005.
[92]  T. M. Quist, I. Sokolchik, H. Shi et al., “HOS3, an ELO-like gene, Inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana,” Molecular Plant, vol. 2, no. 1, pp. 138–151, 2009.
[93]  J. Joubès, S. Raffaele, B. Bourdenx et al., “The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling,” Plant Molecular Biology, vol. 67, no. 5, pp. 547–566, 2008.
[94]  S. Rodríguez-Vargas, A. Sánchez-García, J. M. Martínez-Rivas, J. A. Prieto, and F. Randez-Gil, “Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress,” Applied and Environmental Microbiology, vol. 73, no. 1, pp. 110–116, 2007.
[95]  T. Sakamoto and N. Murata, “Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress,” Current Opinion in Microbiology, vol. 5, no. 2, pp. 206–210, 2002.
[96]  C. Gostin?ar, M. Turk, T. Trbuha, T. Vaupoti?, A. Plemenita?, and N. Gunde-Cimerman, “Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress,” Studies in Mycology, vol. 61, pp. 51–59, 2008.
[97]  M. Zhang, R. Barg, M. Yin et al., “Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants,” Plant Journal, vol. 44, no. 3, pp. 361–371, 2005.
[98]  T. Berberich, M. Harada, K. Sugawara, H. Kodama, K. Iba, and T. Kusano, “Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature,” Plant Molecular Biology, vol. 36, no. 2, pp. 297–306, 1998.
[99]  C. Zorb, C. M. Geilfus, K. H. Muhling, and J. Ludwig-Muller, “The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance,” Journal of Plant Physiology, vol. 170, no. 2, pp. 220–224, 2013.
[100]  J. D. Cohen and R. S. Bandurski, “The chemistry and physiology of the bound auxins,” Annual Review of Plant Physiology, vol. 33, pp. 403–430, 1982.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133