全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heat Diffusion in Klinker Facade: The Study Case of a Gio Ponti Building

DOI: 10.1155/2012/738943

Full-Text   Cite this paper   Add to My Lib

Abstract:

The researchers focus on the IRT procedure of heat diffusion in ceramic finishing materials of contemporary architecture. The aim of the research is the development of a method for the thermal characterization of clinkers, a very common ceramic finishing material of buildings. The first experimental phase was performed in laboratory on clinkers of different shapes, thickness, colors, and glazing surface. The researchers determined two characteristic parameters related to thickness and thermal conductivity, by the interpolation of the heating curve in function of time with an analytical curve (resulted from a particular solution of Fourier’s equation). This curve allows to obtain a parameter characteristic of the material of the specimens under investigation. At present time, the researchers have been studying the correlation between this parameter and the damage level in the specimens; they will be testing the model on real-scale study cases in the second experimental phase. 1. Introduction The use of clinker tiles for finishing the facades of contemporary architecture has been a common practice since the 50–60s. The durability of the ceramic materials, their low cost, their stainless and apparently low sensitivity to pollution effects, and finally the low requirement for maintenance are some of the reasons of their diffused application in the Middle-Southern region of Europe, as an effective alternative to brick-faced masonry, timber cladding, and stucco. After more than 50 years from its first use, most of the ceramic finishing shows damage due to weathering/pollution in the mortar joints and the mortar underneath the tiles [1–3] that cause the tiles detachment. Since 2010, an articulate and widespread research has been developed at Politecnico of Milano and State University of Milan, entitled “Sustainable Campus Leonardo.” The focus of the research is to involve scientists on the study, analysis, survey, assessment, management, repair, and enhancement of the universities’ campus in the Eastern area of Milano. Among these research lines, the authors developed a methodology to asses the state of conservation of the facades, especially ceramic finishing. In the present paper, the authors show the improvement of the preliminary tests based on the solution of the mathematical model of heat transfer in the ceramic medium. The preliminary test had its validation by softly hammering both the sound zone and the delaminated areas of the finishing. The different sounds revealed the detachment of the finishing. The method has been applied on historical

References

[1]  F. Re Cecconi, Metodologie e strumentazioni per la previsione della durabilità di componenti edilizi per edifici scolastici ai fini della loro programmazione manutentiva [Ph.D. thesis], 1996.
[2]  S. M. Cornick and M. A. Lacasse, “An investigation of climate loads on building fa?ades for selected locations in the United States,” Journal of ASTM International, vol. 6, no. 2, pp. 1–17, 2009.
[3]  R. Ma?iulaitis, A. Ki?aite, D. Nagrockiene, and G. Kudabiene, “Evaluation of service frost resistance of ceramic facing tiles,” Journal of Civil Engineering and Management, vol. 10, no. 4, pp. 285–293, 2004.
[4]  M. Markgraf, “Conservation and preservation of the bauhaus building in Dessau,” IV. World Heritage Sites of the 20th Century—German Case Studies, pp. 108–111, 2006.
[5]  A. Canziani, On the Edge of Modern Heritage Conservation (Conservare L’Architettura), Electa, Milano, Italy, 2009.
[6]  M. K. Kumaran, P. Mukhopadhyaya, S. M. Cornick et al., “An Integrated methodology to develop moisture management strategies for exterior wall systems,” in Proceedings of the 9th Canadian Conference on Building Science and Technology, pp. 45–62, Vancouver, Canada, 2003.
[7]  H. Künzel, H. M. Künzel, and K. Sedlbauer, “Long-term performance of External Thermal Insulation Systems (ETICS),” ACTA Architectura, vol. 5, no. 1, pp. 11–24, 2006.
[8]  B. Daniotti, S. Lupica Spagnolo, and R. Paolini, “Climatic data analysis to define accelerated ageing for reference service life evaluation,” in Proceedings of the 11th Conference on Durability of Building Materials and Components (DBMC '08), Istanbul, Turkey, 2008.
[9]  E. Esposito, S. Copparoni, and B. Naticchia, “Recent progress in diagnostics of civil structures by laser vibrometry,” in Proceedings of the 16th World Conference on Nondestructive Testing, Montreal, Canada, 2004.
[10]  P. Castellini, E. Esposito, B. Marchetti, E. Esposito, and E. P. Tomasini, “New applications of Scanning Laser Doppler Vibrometry (SLDV) to non-destructive diagnostics of artworks: mosaics, ceramics, inlaid wood and easel painting,” Journal of Cultural Heritage, vol. 4, supplement 1, pp. 321–329, 2003.
[11]  M. A. Crippa, A. del Conte, E. Esposito, and P. Perrotta, “Applicazione di sistemi ottici per la Diagnostica dello stato di adesione di Rivestimenti superficiali: il caso dell’edificio “Trifoglio” del Politecnico di Milano,” in Atti del 11th Conferenza Nazionale sulle Prove non Distruttive Monitoraggio Diagnostica e 11th Congresso Nazionale dell’AIPnD, Milan, Italy, 2005.
[12]  E. Edis, I. Flores-Colen, and J. De Brito, “Passive thermography inspection of adhered ceramic claddings: limitation and conditioning factors,” Journal of Performance of Constructed Facilities, pp. 258–268, 2012.
[13]  S. Striato, Edificio 14 al Politecnico di Milano:indagini per la conservazione della compaggine muraria [Dissertation thesis], Politecnico di Milano, AA, 2011/2012.
[14]  N. Ludwig, “Thermographic testing on buildings using a simplified heat transfer model,” Materials Evaluation, vol. 61, no. 5, pp. 599–603, 2003.
[15]  S. Caglio, Tecniche di termografia dinamica per lo studio di fenomeni di diffusione del calore in materiali di interesse archeometrico [M.S. thesis], faculty of Physics, State University of Milan, 2004/2005.
[16]  N. Ludwig and P. Teruzzi, “Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography,” Infrared Physics and Technology, vol. 43, no. 3-5, pp. 297–301, 2002.
[17]  D. Muez and T. Fett, Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, Springer, Berlin, Germany, 1999.
[18]  J. Stránsky, J. Vorel, J. Zeman, and M. ?ejnoha, “Mori-Tanaka based estimates of effective thermal conductivity of various Engineering materials,” Micromachines, vol. 2, no. 2, pp. 129–149, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133