全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Agent-Based Reasoning of Impacts of Regional Climate Changes on Land Use Changes in the Three-River Headwaters Region of China

DOI: 10.1155/2013/248194

Full-Text   Cite this paper   Add to My Lib

Abstract:

The land surface in Three-River Headwaters Region (TRHR), a typical ecological fragile zone of China, is quite sensitive to the climate changes which will destabilize certain ecosystem services valuable to the entire nation and neighboring countries. This study aimed to analyze the impacts of climate changes and agents’ adaptive behaviors on the regional land use changes with the agent based model (ABM). First, the main agents were extracted according to the production resources endowments and socioeconomic background. Then the agents’ land use behaviors were analyzed and parameterized. Thereafter, the ABM model was built to simulate the impacts of the climate changes on the regional land use changes and agents’ economic benefits. The results showed that the land use changes were mainly characterized by the increase of grassland and decrease of unused land area. Besides, the agents would get more wealth under the scenario without climate changes in the long term, even though the total income is lower than that under the scenario with climate changes. In addition, the sensitivity analysis indicated that the model is sensitive to the climatic conditions, market price of agricultural and animal husbandry products, government subsidies, and cost control. 1. Introduction Both the global and regional climate changes have greatly undermined the terrestrial landscapes, ecological processes, and ecosystem services [1–4], which have subsequently threatened not only the human societies but also the natural environment itself by the recondite feedback effects [5–8]. There have been dramatic changes in the climatic conditions of China, which will continue to last for a long time in the future. The atmospheric temperature of China has increased by 0.5–0.8°C in the 20th century, with the upper limit exceeding the global average level. Meanwhile, the precipitation has continuously decreased in northern part of China while increased greatly in the southern and southeast part of China. Additionally, the extreme climate and subsequent natural disasters have also showed a longitudinal distribution pattern. A number of researchers have reported the impacts of climate changes on various factors of the ecological and social systems [9, 10], such as terrestrial surface [10–12], the market price [13, 14], and externality of public goods and even the political negotiations among various stakeholders [15, 16]. Climate changes associated with human adaptive activities, especially the social agents’ decisions on land use, have exerted synergistic impacts on the land surface at

References

[1]  H. O. P?rtner and A. P. Farrell, “Physiology and climate change,” Science, vol. 322, no. 5902, pp. 690–692, 2008.
[2]  D. Schr?ter, W. Cramer, R. Leemans et al., “Ecosystem service supply and vulnerability to global change in Europe,” Science, vol. 310, no. 5752, pp. 1333–1337, 2005.
[3]  R. B. Alley, J. Marotzke, W. D. Nordhaus et al., “Abrupt climate change,” Science, vol. 299, no. 5615, pp. 2005–2010, 2003.
[4]  A. Jentsch and C. Beierkuhnlein, “Research frontiers in climate change: effects of extreme meteorological events on ecosystems,” Comptes Rendus—Geoscience, vol. 340, no. 9-10, pp. 621–628, 2008.
[5]  S. Kr?pelin, D. Verschuren, A. M.. Lézine et al., “Climate-driven ecosystem succession in the Sahara: the past 6000 years,” Science, vol. 320, no. 5877, pp. 765–768, 2008.
[6]  K. F. Drinkwater, G. Beaugrand, M. Kaeriyama et al., “On the processes linking climate to ecosystem changes,” Journal of Marine Systems, vol. 79, no. 3-4, pp. 374–388, 2010.
[7]  J. Jin, S. Lu, S. Li, and N. L. Miller, “Impact of land use change on the local climate over the Tibetan Plateau,” Advances in Meteorology, vol. 2010, Article ID 837480, 6 pages, 2010.
[8]  M. Wang, X. Zhang, and X. Yan, “Modeling the climatic effects of urbanization in the Beijing-Tianjin-Hebei metropolitan area,” Theoretical and Applied Climatology, vol. 113, no. 3-4, pp. 377–385, 2013.
[9]  S. Hitz and J. Smith, “Estimating global impacts from climate change,” Global Environmental Change, vol. 14, no. 3, pp. 201–218, 2004.
[10]  T. Yue, Z. Fan, C. Chen, X. Sun, and B. Li, “Surface modelling of global terrestrial ecosystems under three climate change scenarios,” Ecological Modelling, vol. 222, no. 14, pp. 2342–2361, 2011.
[11]  M. Ostwald and D. Chen, “Land-use change: impacts of climate variations and policies among small-scale farmers in the Loess Plateau, China,” Land Use Policy, vol. 23, no. 4, pp. 361–371, 2006.
[12]  S. Briner, C. Elkin, R. Huber, and A. Grêt-Regamey, “Assessing the impacts of economic and climate changes on land-use in mountain regions: a spatial dynamic modeling approach,” Agriculture, Ecosystems and Environment, vol. 149, pp. 50–63, 2012.
[13]  T. Li, R. F. Grant, and L. B. Flanagan, “Climate impact on net ecosystem productivity of a semi-arid natural grassland: modeling and measurement,” Agricultural and Forest Meteorology, vol. 126, no. 1-2, pp. 99–116, 2004.
[14]  A. Fleischer and M. Sternberg, “The economic impact of global climate change on Mediterranean rangeland ecosystems: a space-for-time approach,” Ecological Economics, vol. 59, no. 3, pp. 287–295, 2006.
[15]  L. E. Rustad, “The response of terrestrial ecosystems to global climate change: towards an integrated approach,” Science of the Total Environment, vol. 404, no. 2-3, pp. 222–235, 2008.
[16]  C. E. Williamson, J. E. Saros, and D. W. Schindler, “Climate change: sentinels of change,” Science, vol. 323, no. 5916, pp. 887–888, 2009.
[17]  M. D. A. Rounsevell and D. S. Reay, “Land use and climate change in the UK,” Land Use Policy, vol. 26, supplement 1, pp. S160–S169, 2009.
[18]  L. Zhen, L. Yang, G. D. Xie, and S. K. Cheng, “Land use dynamics and policy implications in the Jinghe watershed of western China: a critical assessment from local perspectives,” Natural Resources Journal, vol. 46, no. 4, pp. 859–879, 2006.
[19]  X. Xu, J. Liu, Q. Shao, and J. Fan, “The dynamic changes of ecosystem spatial pattern and structure in the three-river headwaters region in Qinghai Province during recent 30 years,” Geographic Research, vol. 27, no. 4, pp. 829–839, 2008 (Chinese).
[20]  J. G. Polhill, L. Sutherland, and N. M. Gotts, “Using qualitative evidence to enhance an agent-based modelling system for studying land use change,” Journal of Artificial Societies and Social Simulation, vol. 13, no. 2, p. 10, 2010.
[21]  L. R. Izquierdo, N. M. Gotts, and J. G. Polhill, “Case-based reasoning, social dilemmas, and a new equilibrium concept,” Journal of Artificial Societies and Social Simulation, vol. 7, no. 3, p. 1, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133