全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Scenario Analyses of Land Use Conversion in the North China Plain: An Econometric Approach

DOI: 10.1155/2013/592121

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scenario analysis and dynamic prediction of land use structure which involve many driving factors are helpful to investigate the mechanism of land use changes and even to optimize land use allocation for sustainable development. In this study, land use structure changes during 1988–2010 in North China Plain were discerned and the effects of various natural and socioeconomic driving factors on land use structure changes were quantitatively analyzed based on an econometric model. The key drivers of land use structure changes in the model are county-level net returns of land resource. In this research, we modified the net returns of each land use type for three scenarios, including business as usual (BAU) scenario, rapid economic growth (REG) scenario, and coordinated environmental sustainability (CES) scenario. The simulation results showed that, under different scenarios, future land use structures were different due to the competition among various land use types. The land use structure changes in North China Plain in the 40-year future will experience a transfer from cultivated land to built-up area, an increase of forestry, and decrease of grassland. The research will provide some significant references for land use management and planning in the study area. 1. Introduction Land use change, as the direct cause and response of regional environment change, has always been one of the core topics of global change research [1]. It is difficult to analyze the relationship between land use and climate change clearly. On the one hand, climate change should exert impacts on the production of cultivated land, forestry, grassland, and so forth. For example, agricultural yields can be directly affected by climate change through changing temperature and precipitation, the distribution of pests, and the frequency of forest fires, and the markets can also be affected by climate change [2]. Moreover, in recent years, there have been a number of literature-analyzed effects of climate change on agricultural production, with the help of some models [3, 4]. From these pieces of literature, we can learn that hedonic price models are widely used to estimate the relationship between county-level farmland values and climate variables such as temperature and precipitation. These models are then used to simulate the effects of climate change on the value of agricultural production [5]. Even so, some researchers think that it is unreasonable to use mean temperature in the analysis of climate change impacts on agriculture [6]. They find that the grain output has a good positive

References

[1]  J. A. Foley, R. DeFries, G. P. Asner et al., “Global consequences of land use,” Science, vol. 309, no. 5734, pp. 570–574, 2005.
[2]  D. Haim, J. Alig, J. Plantinga, D. Haim, and J. Sohngen, “Climate change and future land use in the united states: an economic approach,” Climate Change Economics, vol. 2, no. 1, pp. 27–51, 2011.
[3]  Q. Jiang, X. Deng, H. Yan, D. Liu, and R. Qu, “Identification of food security in the mountainous guyuan prefecture of China by exploring changes of food production,” Journal of Food, Agriculture and Environment, vol. 10, no. 1, pp. 210–216, 2012.
[4]  W. Schlenker, W. M. Hanemann, and A. C. Fisher, “Will U.S. agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach,” The American Economic Review, vol. 95, no. 1, pp. 395–406, 2005.
[5]  O. Deschênes and M. Greenstone, “The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather,” The American Economic Review, vol. 97, no. 1, pp. 354–385, 2007.
[6]  W. Schlenker and M. J. Roberts, “Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 37, pp. 15594–15598, 2009.
[7]  J. Perez-Garcia, L. A. Joyce, A. D. Mcguire, and X. Xiao, “Impacts of climate change on the global forest sector,” Climatic Change, vol. 54, no. 4, pp. 439–461, 2002.
[8]  B. Sohngen, R. Mendelsohn, and R. Sedjo, “A global model of climate change impacts on timber markets,” Journal of Agricultural and Resource Economics, vol. 26, no. 2, pp. 326–343, 2001.
[9]  R. C. Izaurralde, N. J. Rosenberg, R. A. Brown, and A. M. Thomson, “Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States—part II: regional agricultural production in 2030 and 2095,” Agricultural and Forest Meteorology, vol. 117, no. 1-2, pp. 97–122, 2003.
[10]  D. B. Lobell and C. B. Field, “Estimation of the carbon dioxide (CO2) fertilization effect using growth rate anomalies of CO2 and crop yields since 1961,” Global Change Biology, vol. 14, no. 1, pp. 39–45, 2008.
[11]  R. Qu, X. Cui, H. Yan, E. Ma, and J. Zhan, “Impacts of land cover change on the near-surface temperature in the North China Plain,” Advances in Meteorology, vol. 2013, Article ID 409302, 12 pages, 2013.
[12]  S. Sirohi and A. Michaelowa, “Sufferer and cause: Indian livestock and climate change,” Climatic Change, vol. 85, no. 3-4, pp. 285–298, 2007.
[13]  M. Herrero, P. K. Thornton, P. Gerber, and R. S. Reid, “Livestock, livelihoods and the environment: understanding the trade-offs,” Current Opinion in Environmental Sustainability, vol. 1, no. 2, pp. 111–120, 2009.
[14]  T. Garnett, “Livestock-related greenhouse gas emissions: impacts and options for policy makers,” Environmental Science and Policy, vol. 12, no. 4, pp. 491–503, 2009.
[15]  C. Nobre, P. Sellers, and J. Shukla, “Amazonian deforestation and regional climate change,” Journal of Climate, vol. 4, no. 10, pp. 957–988, 1991.
[16]  X. Deng, H. Su, and J. Zhan, “Integration of multiple data sources to simulate the dynamics of land systems,” Sensors, vol. 8, no. 2, pp. 620–634, 2008.
[17]  X. Deng, F. Yin, Y. Lin, Q. Jin, and R. Qu, “Equilibrium analyses on structural changes of land uses in Jiangxi Province,” Journal of Food, Agriculture and Environment, vol. 10, no. 1, pp. 846–852, 2012.
[18]  D. R. Capozza and R. W. Helsley, “The fundamentals of land prices and urban growth,” Journal of Urban Economics, vol. 26, no. 3, pp. 295–306, 1989.
[19]  Q. Jiang, X. Deng, J. Zhan, and S. He, “Estimation of land production and its response to cultivated land conversion in North China Plain,” Chinese Geographical Science, vol. 21, no. 6, pp. 685–694, 2011.
[20]  L. Jiang, X. Deng, and K. C. Seto, “Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China,” Landscape and Urban Planning, vol. 108, no. 2–4, pp. 131–139, 2012.
[21]  R. S. Yin, Q. Xiang, J. T. Xu, and X. Z. Deng, “Modeling the driving forces of the land use and land cover changes along the upper yangtze river of China,” Environmental Management, vol. 45, no. 3, pp. 454–465, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133