全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of the Aerosol Types over Athens, Greece: The Influence of Air-Mass Transport

DOI: 10.1155/2010/168346

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aerosol optical depth at 550?nm ( ) and fine-mode (FM) fraction data from Terra-MODIS were obtained over the Greater Athens Area covering the period February 2000–December 2005. Based on both and FM values three main aerosol types have been discriminated corresponding to urban/industrial aerosols, clean maritime conditions, and coarse-mode, probably desert dust, particles. Five main sectors were identified for the classification of the air-mass trajectories, which were further used in the analysis of the ( and FM data for the three aerosol types). The HYSPLIT model was used to compute back trajectories at three altitudes to investigate the relation between -FM and wind sector depending on the altitude. The accumulation of local pollution is favored in spring and corresponds to air masses at lower altitudes originating from Eastern Europe and the Balkan. Clean maritime conditions are rare over Athens, limited in the winter season and associated with air masses from the Western or Northwestern sector. The coarse-mode particles origin seems to be more complicated proportionally to the season. Thus, in summer the Northern sector dominates, while in the other seasons, and especially in spring, the air masses belong to the Southern sector enriched with Saharan dust aerosols. 1. Introduction Atmospheric aerosols play a crucial role in the Earth’s climate through scattering and absorption both solar and thermal radiation (direct effect), thus influencing the radiative and energy balance and/or acting as cloud condensation nuclei (indirect effect), affecting cloud albedo and lifetime, precipitation rate, and hydrology cycle [1]. The great effort spent over the last decades by the scientific community focusing on aerosol climatology and optical properties reflects the importance attributed to aerosols in controlling the Earth’s climate [2]. Major advancements in this field have been achieved by the new generation of space borne instruments (e.g., Along Track Scanning Radiometer (ATSR-2) on board the European Space Agency (ESA-ERS2), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer (MISR) on board the NASA Terra, POLarization and Directionality of the Earth's Reflectances (POLDER) on board the ADEOS), specifically designed to provide detection and characterization of atmospheric aerosols [3]. The Mediterranean Sea is one of the most affected areas regarding aerosol load in the world [4]. Due to the variety of the regions surrounding the Mediterranean basin, different aerosol types can be found within the basin, having

References

[1]  J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review,” Reviews of Geophysics, vol. 38, no. 4, pp. 513–543, 2000.
[2]  IPCC, “Summary for policymakers,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, UK, 2007.
[3]  M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bulletin of the American Meteorological Society, vol. 80, no. 11, pp. 2229–2259, 1999.
[4]  F. Barnaba and G. P. Gobbi, “Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001,” Atmospheric Chemistry and Physics, vol. 4, no. 9-10, pp. 2367–2391, 2004.
[5]  C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, X. Querol, and I. Vardavas, “Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data,” Journal of Geophysical Research D, vol. 113, no. 11, Article ID D11205, 2008.
[6]  C. Moulin, C. E. Lambert, U. Dayan, et al., “Satellite climatology of African dust transport in the Mediterranean atmosphere,” Journal of Geophysical Research D, vol. 103, no. D11, pp. 13137–13144, 1998.
[7]  D. Antoine and D. Nobileau, “Recent increase of Saharan dust transport over the Mediterranean Sea, as revealed from ocean color satellite (SeaWiFS) observations,” Journal of Geophysical Research D, vol. 111, no. 12, Article ID D12214, 2006.
[8]  A. M. Tafuro, F. Barnaba, F. De Tomasi, M. R. Perrone, and G. P. Gobbi, “Saharan dust particle properties over the central Mediterranean,” Atmospheric Research, vol. 81, no. 1, pp. 67–93, 2006.
[9]  D. G. Kaskaoutis, H. D. Kambezidis, P. T. Nastos, and P. G. Kosmopoulos, “Study on an intense dust storm over Greece,” Atmospheric Environment, vol. 42, no. 29, pp. 6884–6896, 2008.
[10]  D. Meloni, A. di Sarra, F. Monteleone, G. Pace, S. Piacentino, and D. M. Sferlazzo, “Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa,” Atmospheric Research, vol. 88, no. 2, pp. 134–148, 2008.
[11]  J. Lelieveld, H. Berresheim, S. Borrmann, et al., “Global air pollution crossroads over the Mediterranean,” Science, vol. 298, no. 5594, pp. 794–799, 2002.
[12]  A. Stohl, S. Eckhardt, C. Forster, P. James, and N. Spichtinger, “On the pathways and timescales of intercontinental air pollution transport,” Journal of Geophysical Research, vol. 107, Article ID D4684, 2002.
[13]  B. N. Duncan and I. Bey, “A modeling study of the export pathways of pollution from Europe: seasonal and interannual variations (1987–1997),” Journal of Geophysical Research D, vol. 109, no. 8, Article ID D08301, pp. 1–19, 2004.
[14]  J. Feichter, E. Kjellstr?m, H. Rodhe, F. Dentener, J. Lelieveld, and G.-J. Roelofs, “Simulation of the tropospheric sulfur cycle in a global climate model,” Atmospheric Environment, vol. 30, no. 10-11, pp. 1693–1707, 1996.
[15]  J. M. Prospero, “Mineral and sea salt aerosol concentration in various ocean regions,” Journal of Geophysical Research, vol. 84, no. C2, pp. 725–731, 1979.
[16]  J. Heintzenberg, D. C. Covert, and R. Van Dingenen, “Size distribution and chemical composition of marine aerosols: a compilation and review,” Tellus, Series B, vol. 52, no. 4, pp. 1104–1122, 2000.
[17]  D. G. Kaskaoutis, P. Kosmopoulos, H. D. Kambezidis, and P. T. Nastos, “Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data,” Atmospheric Environment, vol. 41, no. 34, pp. 7315–7329, 2007.
[18]  P. G. Kosmopoulos, D. G. Kaskaoutis, P. T. Nastos, and H. D. Kambezidis, “Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2354–2366, 2008.
[19]  Y. J. Kaufman and D. Tanrè, “Algorithm for remote sensing of tropospheric aerosol from MODIS,” Algorithm Theoretical Basis Documents (ATBD-MOD-02), p. 85, 1998.
[20]  R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance,” Journal of Geophysical Research D, vol. 112, no. 13, Article ID D13211, 2007.
[21]  D. A. Chu, Y. J. Kaufman, G. Zibordi, et al., “Global monitoring of air pollution over land from the Earth observing system-terra moderate resolution imaging spectroradiometer (MODIS),” Journal of Geophysical Research D, vol. 108, no. 21, article 4661, pp. ACH4.1–ACH4.18, 2003.
[22]  C. Ichoku, D. A. Chu, S. Mattoo, et al., “A spatio-temporal approach for global validation and analysis of MODIS aerosol products,” Geophysical Research Letters, vol. 29, no. 12, pp. 1.1–1.14, 2002.
[23]  D. A. Chu, Y. J. Kaufman, C. Ichoku, L. A. Remer, D. Tanré, and B. N. Holben, “Validation of MODIS aerosol optical depth retrieval over land,” Geophysical Research Letters, vol. 29, no. 12, pp. 2.1–2.4, 2002.
[24]  L. A. Remer, D. Tanré, Y. J. Kaufman, et al., “Validation of MODIS aerosol retrieval over ocean,” Geophysical Research Letters, vol. 29, no. 12, pp. 3.1–3.4, 2002.
[25]  R. C. Levy, L. A. Remer, D. Tanré, et al., “Evaluation of the moderate-resolution imaging spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE,” Journal of Geophysical Research D, vol. 108, no. 19, pp. 10.1–10.13, 2003.
[26]  R. C. Levy, L. A. Remer, and O. Dubovik, “Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land,” Journal of Geophysical Research D, vol. 112, no. 13, Article ID D13210, 2007.
[27]  L. A. Remer, Y. J. Kaufman, D. Tanré, et al., “The MODIS aerosol algorithm, products, and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp. 947–973, 2005.
[28]  R. R. Draxler and G. D. Rolph, “HYSPLIT (Hybrid single-particle Lagrangian Integrated Trajectory) model,” NOAA Air Resources Laboratory, Silver, Spring, Md, USA, 2003, http://www.arl.noaa.gov/ready/hysplit4.html.
[29]  A. Papayannis, D. Balis, V. Amiridis, et al., “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2065–2079, 2005.
[30]  V. Amiridis, D. S. Balis, S. Kazadzis, et al., “Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET),” Journal of Geophysical Research D, vol. 110, no. 21, Article ID D21203, pp. 1–12, 2005.
[31]  D. Meloni, A. di Sarra, G. Biavati, et al., “Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005,” Atmospheric Environment, vol. 41, no. 14, pp. 3041–3056, 2007.
[32]  Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature, vol. 419, no. 6903, pp. 215–223, 2002.
[33]  L. A. Remer and Y. J. Kaufman, “Dynamic aerosol model: urban/industrial aerosol,” Journal of Geophysical Research D, vol. 103, no. D12, pp. 13859–13871, 1998.
[34]  K. O. Ogunjobi, Z. He, and C. Simmer, “Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa,” Atmospheric Research, vol. 88, no. 2, pp. 89–107, 2008.
[35]  A. Smirnov, B. N. Holben, O. Dubovik, R. Frouin, T. F. Eck, and I. Slutsker, “Maritime component in aerosol optical models derived from aerosol robotic network data,” Journal of Geophysical Research D, vol. 108, no. 1, pp. AAC14.1–AAC14.11, 2003.
[36]  G. Pace, A. di Sarra, D. Meloni, S. Piacentino, and P. Chamard, “Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types,” Atmospheric Chemistry and Physics, vol. 6, no. 3, pp. 697–713, 2006.
[37]  K. K. Moorthy, S. S. Babu, and S. K. Satheesh, “Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season: results from ARMEX field campaign,” Journal of the Atmospheric Sciences, vol. 62, no. 1, pp. 192–206, 2005.
[38]  K. K. Moorthy, S. S. Babu, and S. K. Satheesh, “Aerosol spectral optical depths over the Bay of Bengal: role of transport,” Geophysical Research Letters, vol. 30, no. 5, pp. 53.1–53.4, 2003.
[39]  P. Formenti, M. O. Andreae, T. W. Andreae, et al., “Aerosol optical properties and large-scale transport of air masses: observations at a coastal and a semiarid site in the Eastern Mediterranean during summer 1998,” Journal of Geophysical Research D, vol. 106, no. D9, pp. 9807–9826, 2001.
[40]  A. di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fuà, “Saharan dust profiles measured by lidar at Lampedusa,” Journal of Geophysical Research D, vol. 106, no. D10, pp. 10335–10348, 2001.
[41]  N. Kalivitis, E. Gerasopoulos, M. Vrekoussis, et al., “Dust transport over the Eastern Mediterranean derived from total ozone mapping spectrometer, aerosol robotic network, and surface measurements,” Journal of Geophysical Research D, vol. 112, no. 3, Article ID D03202, 2007.
[42]  D. Melas, H. D. Kambezidis, J. L. Walmsley, et al., “Summary of meeting: NATO/CCMS pilot study workshop on air pollution transport and diffusion over coastal urban areas,” Atmospheric Environment, vol. 29, no. 24, pp. 3713–3718, 1995.
[43]  C. Zerefos, K. Ganev, K. Kourtidis, M. Tzortziou, A. Vasaras, and E. Syrakov, “On the origin of above Northern Greece,” Geophysical Research Letters, vol. 27, no. 3, pp. 365–368, 2000.
[44]  J. Sciare, H. Bardouki, C. Moulin, and N. Mihalopoulos, “Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime,” Atmospheric Chemistry and Physics, vol. 3, pp. 291–302, 2003.
[45]  P. Alpert, P. Kishcha, A. Shtivelman, S. O. Krichak, and J. H. Joseph, “Vertical distribution of Saharan dust based on 2.5-year model predictions,” Atmospheric Research, vol. 70, no. 2, pp. 109–130, 2004.
[46]  D. S. Balis, V. Amiridis, C. Zerefos, et al., “Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode,” Atmospheric Environment, vol. 37, no. 32, pp. 4529–4538, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133