全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aerosol Monitoring over Athens Using Satellite and Ground-Based Measurements

DOI: 10.1155/2010/147910

Full-Text   Cite this paper   Add to My Lib

Abstract:

Satellite data of moderate spatial resolution (MODIS and MERIS) were used to retrieve the aerosol optical depth (AOD) over the urban area of Athens. MODIS products were obtained at a horizontal resolution of 10 by 10? centered over Athens, while the differential textural analysis (DTA) code was applied to MERIS images to retrieve relative-to-reference AOD with a resolution of 260?m by 290?m. The possibility of exploiting the full resolution of MERIS data in retrieving AOD over a grid of a few hundreds metres was thereby investigated for the first time. MERIS-based AOD, centred at 560?nm, showed strong positive correlation to ground-based data ( = 0.85), while MODIS AOD products were in agreement with both MERIS and . Back trajectories were used to study the impact of atmospheric conditions prevailing during the examined days. Days associated with Saharan air masses corresponded to enhanced AOD and predominance of coarse-mode particles. The results suggest that, at least for the case of Athens, AOD retrieved by MERIS images using the DTA code over cloud-free areas can be related to . The accuracy of retrieval mainly depends on the successful selection of the reference satellite data, namely, an image being least contaminated by tropospheric aerosols. 1. Introduction Various types of aerosol can be found in the Mediterranean, namely, desert dust, originated from the Saharan desert, pollution particles, emittedmainly by urban and industrial activities, marine aerosol, formed continuously over the Mediterranean, and biomass-burning smoke, produced by seasonal forest fires during summer. and have been accounted for health impairment of citizens in urban areas [1, 2], and high levels of such particulate pollutants, along with gaseous pollutants (nitrogen oxides, carbon monoxide, and ozone) have been reported in Athens (Greece) over the last two decades [3]. Therefore, air quality improvement and monitoring in the capital of Greece is of great concern to the government since reduction of air pollutant exposures will have both short- and long-term public health benefits. Furthermore, Greece has to comply with the related directives of the European Union. Aerosol parameters can be measured in-situ or remotely sensed from ground, aircraft, or satellite. In particular, satellite remote sensing has been increasingly used to map aerosols in the atmosphere [4]. It constitutes a recent but powerful tool for assessing aerosol spatial distribution and properties due to its major benefit of providing complete and synoptic views of large areas in single snapshots. The

References

[1]  C. A. Pope III and D. W. Dockery, “Acute health effects of pollution on symptomatic and asymptomatic children,” American Review of Respiratory Disease, vol. 145, no. 5, pp. 1123–1128, 1992.
[2]  J. M. Samet, F. Dominici, F. C. Curriero, I. Coursac, and S. L. Zeger, “Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994,” The New England Journal of Medicine, vol. 343, no. 24, pp. 1742–1749, 2000.
[3]  A. Chaloulakou, P. Kassomenos, N. Spyrellis, P. Demokritou, and P. Koutrakis, “Measurements of and particle concentrations in Athens, Greece,” Atmospheric Environment, vol. 37, no. 5, pp. 649–660, 2003.
[4]  M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bulletin of the American Meteorological Society, vol. 80, no. 11, pp. 2229–2259, 1999.
[5]  B. N. Holben, E. Vermote, Y. J. Kaufman, D. Tanré, and V. Kalb, “Aerosol retrieval overland from AVHRR data—application for atmospheric correction,” IEEE Trancation on Geoscience and Remote Sensing, vol. 30, no. 2, pp. 212–222, 1992.
[6]  E. Vermote, N. Saleous, and B. N. Holben, “Aerosol retrieval and atmospheric correction,” in Advances in the Use Of NOAA AVHRR Data For Land Applications, G. D'Souza, Ed., pp. 93–124, Kluwer Academic Publishers, Dodrecht, The Netherlands, 1996.
[7]  A. Ignatov and L. Stowe, “Aerosol retrievals from individual AVHRR channels. Part I: retrieval algorithm and transition from Dave to 6S radiative transfer model,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 313–334, 2002.
[8]  A. Retails, N. Sifakis, N. Grosso, D. Paronis, and D. Sarigiannis, “Aerosol optical thickness retrieval from AVHRR images over the Athens urban area,” in Proceedings of the International Geoscience & Remote Sensing Symposium (IGARSS '03), vol. 4, pp. 2182–2184, Toulouse, France, July 2003.
[9]  J. Vidot, R. Santer, and D. Ramon, “Atmospheric particulate matter (PM) estimation from SeaWiFS imagery,” Remote Sensing of Environment, vol. 111, no. 1, pp. 1–10, 2007.
[10]  N. Sifakis and P.-Y. Deschamps, “Mapping of air pollution using SPOT satellite data,” Photogrammetric Engineering & Remote Sensing, vol. 58, no. 10, pp. 1433–1437, 1992.
[11]  N. I. Sifakis, N. A. Soulakellis, and D. K. Paronis, “Quantitative mapping of air pollution density using Earth observations: a new processing method and application to an urban area,” International Journal of Remote Sensing, vol. 19, no. 17, pp. 3289–3300, 1998.
[12]  A. Retalis, C. Cartalis, and E. Athanassiou, “Assessment of the distribution of aerosols in the area of Athens with the use of Landsat Thematic Mapper data,” International Journal of Remote Sensing, vol. 20, no. 5, pp. 939–945, 1999.
[13]  H. Yu, R. E. Dickinson, M. Chin, et al., “Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations,” Journal of Geophysical Research D, vol. 108, no. 3, Article ID 4128, 2003.
[14]  C. Ichoku, Y. J. Kaufman, L. A. Remer, and R. Levy, “Global aerosol remote sensing from MODIS,” Advances in Space Research, vol. 34, no. 4, pp. 820–827, 2004.
[15]  Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature, vol. 419, no. 6903, pp. 215–223, 2002.
[16]  R. C. Levy, L. A. Remer, D. Tanré, et al., “Evaluation of the moderate-resolution imaging spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE,” Journal of Geophysical Research, vol. 108, no. 19, Article ID 8594, 2003.
[17]  M. Chin, A. Chu, R. Levy, et al., “Aerosol distribution in the Northern Hemisphere during ACE-Asia: results from global model, satellite observations, and Sun photometer measurements,” Journal of Geophysical Research, vol. 109, no. 23, Article ID D23S90, 2004.
[18]  K. D. Hutchison, “Applications of MODIS satellite data and products for monitoring air quality in the state of Texas,” Atmospheric Environment, vol. 37, no. 17, pp. 2403–2412, 2003.
[19]  H. D. Kambezidis, R. Tulleken, G. T. Amanatidis, A. G. Paliatsos, and D. N. Asimakopoulos, “Statistical evaluation of selected air pollutants in Athens, Greece,” Environmetrics, vol. 6, no. 4, pp. 349–361, 1995.
[20]  A. D. Adamopoulos, H. D. Kambezidis, D. G. Kaskaoutis, and G. Giavis, “A study of aerosol particle sizes in the atmosphere of Athens, Greece, retrieved from solar spectral measurements,” Atmospheric Research, vol. 86, no. 3-4, pp. 194–206, 2007.
[21]  European Space Agency (ESA), EnviSat MERIS Handbook; Issue 1.2e, 2005, http://envisat.esa.int/dataproducts/meris/.
[22]  R. C. Levy, L. A. Remer, and O. Dubovik, “Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land,” Journal of Geophysical Research D, vol. 112, no. 13, Article ID D13210, 2007.
[23]  D. A. Chu, Y. J. Kaufman, C. Ichoku, L. A. Remer, D. Tanré, and B. N. Holben, “Validation of MODIS aerosol optical depth retrieval overland,” Geophysical Research Letters, vol. 29, no. 12, 2002.
[24]  L. A. Remer, D. Tanré, Y. J. Kaufman, et al., “Validation of MODIS aerosol retrieval over ocean,” Geophysical Research Letters, vol. 29, no. 12, Article ID 8008, 2002.
[25]  L. A. Remer, Y. J. Kaufman, D. Tanré, et al., “The MODIS aerosol algorithm, products, and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp. 947–973, 2005.
[26]  D. Paronis and N. Sifakis, “Satellite aerosol optical thickness retrieval over land with contrast reduction analysis using a variable window size,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), vol. 2, pp. 1276–1278, Toulouze, France, July 2003.
[27]  T. F. Eck, B. N. Holben, J. S. Reid, et al., “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” Journal of Geophysical Research D, vol. 104, no. D24, pp. 31333–31349, 1999.
[28]  V. E. Cachorro, R. Vergaz, and A. M. de Frutos, “A quantitative comparison of -?ngstr?m turbidity parameter retrieved in different spectral ranges based on spectroradiometer solar radiation measurements,” Atmospheric Environment, vol. 35, no. 30, pp. 5117–5124, 2001.
[29]  D. G. Kaskaoutis, H. D. Kambezidis, A. D. Adamopoulos, and P. A. Kassomenos, “Comparison between experimental data and modeling estimates of aerosol optical depth over Athens, Greece,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 68, no. 11, pp. 1167–1178, 2006.
[30]  R. R. Draxler and G. D. Rolph, HYSPLIT (Hybrid single-particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory, Silver Spring, Md, USA, 2003, http://www.arl.noaa.gov/ready/hysplit4.html.
[31]  D. Meloni, A. di Sarra, G. Biavati, et al., “Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005,” Atmospheric Environment, vol. 41, no. 14, pp. 3041–3056, 2007.
[32]  G. Pace, A. di Sarra, D. Meloni, S. Piacentino, and P. Chamard, “Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types,” Atmospheric Chemistry and Physics, vol. 6, no. 3, pp. 697–713, 2006.
[33]  A. Papayannis, D. Balis, V. Amiridis, et al., “Measurements of Saharan dust aerosols over the eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2065–2079, 2005.
[34]  D. S. Balis, V. Amiridis, C. Zerefos, et al., “Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode,” Atmospheric Environment, vol. 37, no. 32, pp. 4529–4538, 2003.
[35]  S. Nickovic, G. Kallos, A. Papadopoulos, and O. Kakaliagou, “A model for prediction of desert dust cycle in the atmosphere,” Journal of Geophysical Research D, vol. 106, no. D16, pp. 18113–18129, 2001.
[36]  M. Viana, C. Perez, X. Querol, A. Alastuey, S. Nickovic, and J. M. Baldasano, “Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain),” Atmospheric Environment, vol. 39, no. 29, pp. 5343–5361, 2005.
[37]  C. Pérez, S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro, “A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling,” Journal of Geophysical Research D, vol. 111, no. 15, Article ID D15214, 2006.
[38]  N. Kalivitis, E. Gerasopoulos, M. Vrekoussis, et al., “Dust transport over the eastern mediterranean derived from total ozone mapping spectrometer, aerosol robotic network, and surface measurements,” Journal of Geophysical Research D, vol. 112, no. 3, Article ID D03202, 2007.
[39]  E. Gerasopoulos, G. Kouvarakis, P. Babasakalis, M. Vrekoussis, J. P. Putaud, and N. Mihalopoulos, “Origin and variability of particulate matter ( ) mass concentrations over the Eastern Mediterranean,” Atmospheric Environment, vol. 40, no. 25, pp. 4679–4690, 2006.
[40]  G. P. Gobbi, F. Barnaba, and L. Ammannato, “Estimating the impact of Saharan dust on the year 2001 record of Rome, Italy,” Atmospheric Environment, vol. 41, no. 2, pp. 261–275, 2007.
[41]  D. G. Kaskaoutis, H. D. Kambezidis, P. T. Nastos, and P. G. Kosmopoulos, “Study on an intense dust storm over Greece,” Atmospheric Environment, vol. 42, no. 29, pp. 6884–6896, 2008.
[42]  R. M. Harrison, A. R. Deacon, M. R. Jones, and R. S. Appleby, “Sources and processes affection concentrations of and particulate matter in Birmingham (U.K.),” Atmospheric Environment, vol. 31, no. 24, pp. 4103–4117, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133