During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI) in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately C warmer during the day than the rural areas and over C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone. 1. Introduction Within the United States, heat waves are the most prominent cause of weather-related human mortality [1] and have been well studied by the public health community [2]. In recent years, the effects of heat waves had devastating impacts both in the United States [1, 3] and Europe [4–6]. The excess all cause mortality related to the August 2003 heat wave in Europe (estimated 22,000 to 45,000 heat-related deaths in 2 weeks across Europe) calls dramatic attention to the relationship between heat waves and health [7]. Children, elderly persons, those with chronic diseases such as cardiovascular and respiratory diseases, low income and minority groups, and individuals living alone are particularly vulnerable to excessive heat [2, 8, 9]. Unfortunately, the frequency, intensity, and impacts of heat waves will likely increase during future decades [10, 11]. As a result, many cities have implemented heat watch-warning technologies to mitigate the impacts of heat waves and protect the populations of large urban areas [12–14]. In general, the atmospheric processes associated with heat waves involve significant, mid-tropospheric anomalies which subsequently produce extended periods of subsidence, clear skies, light winds, warm-air advection, and prolonged above normal temperature [11, 15, 16]. As such, heat waves impact large geographic areas. Yet, during two-heat-wave events in the central portion of the United States, approximately 65% of all heat-related deaths in 1995 occurred in Chicago [15] and, during 1999, approximately 80% of all deaths occurred in metropolitan areas (including Cincinnati, Chicago, Kansas
References
[1]
S. A. Changnon, K. E. Kunkel, and B. C. Reinke, “Impacts and responses to the 1995 heat wave: a call to action,” Bulletin of the American Meteorological Society, vol. 77, no. 7, pp. 1497–1506, 1996.
[2]
R. S. Kovats and S. Hajat, “Heat stress and public health: a critical review,” Annual Review of Public Health, vol. 29, pp. 41–55, 2008.
[3]
J. C. Semenza, C. H. Rubin, K. H. Falter, et al., “Heat-related deaths during the July 1995 heat wave in Chicago,” New England Journal of Medicine, vol. 335, no. 2, pp. 84–90, 1996.
[4]
S. Vandentorren, F. Suzan, S. Medina, et al., “Mortality in 13 French cities during the August 2003 heat wave,” American Journal of Public Health, vol. 94, no. 9, pp. 1518–1520, 2004.
[5]
T. Kosatsky, “The 2003 European heat waves,” Euro Surveillance, vol. 10, no. 7, pp. 148–149, 2005.
[6]
L. Grize, A. Huss, O. Thommen, C. Schindler, and C. Braun-Fahrl?nder, “Heat wave 2003 and mortality in Switzerland,” Swiss Medical Weekly, vol. 135, no. 13-14, pp. 200–205, 2005.
[7]
J. A. Patz, D. Campbell-Lendrum, T. Holloway, and J. A. Foley, “Impact of regional climate change on human health,” Nature, vol. 438, no. 7066, pp. 310–317, 2005.
[8]
S. L. Harlan, A. J. Brazel, L. Prashad, W. L. Stefanov, and L. Larsen, “Neighborhood microclimates and vulnerability to heat stress,” Social Science and Medicine, vol. 63, no. 11, pp. 2847–2863, 2006.
[9]
R. Basu, F. Dominici, and J. M. Samet, “Temperature and mortality among the elderly in the United States: a comparison of epidemiologic methods,” Epidemiology, vol. 16, no. 1, pp. 58–66, 2005.
[10]
M. Beniston, “The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations,” Geophysical Research Letters, vol. 31, no. 2, Article ID L02202, 2004.
[11]
G. A. Meehl and C. Tebaldi, “More intense, more frequent, and longer lasting heat waves in the 21st century,” Science, vol. 305, no. 5686, pp. 994–997, 2004.
[12]
S. Sheridan and L. Kalkstein, “Heat watch-warning systems in urban areas,” World Resource Review, vol. 10, pp. 375–383, 1998.
[13]
K. L. Ebi, T. J. Teisberg, L. S. Kalkstein, L. Robinson, and R. F. Weiher, “Heat watch/warning systems save lives: estimated costs and benefits for Philadelphia 1995–98,” Bulletin of the American Meteorological Society, vol. 85, no. 8, pp. 1067–1073, 2004.
[14]
S. C. Sheridan and L. S. Kalkstein, “Progress in heat watch-warning system technology,” Bulletin of the American Meteorological Society, vol. 85, no. 12, pp. 1931–1941, 2004.
[15]
K. E. Kunkel, S. A. Changnon, B. C. Reinke, and R. W. Arritt, “The July 1995 heat wave in the midwest: a climatic perspective and critical weather factors,” Bulletin of the American Meteorological Society, vol. 77, no. 7, pp. 1507–1518, 1996.
[16]
M. A. Palecki, S. A. Changnon, and K. E. Kunkel, “The nature and impacts of the July 1999 heat wave in the midwestern United States: learning from the lessons of 1995,” Bulletin of the American Meteorological Society, vol. 82, no. 7, pp. 1353–1367, 2001.
[17]
H. Johnson, R. S. Kovats, G. McGregor, J. Stedman, M. Gibbs, and H. Walton, “The impact of the 2003 heat wave on daily mortality in England and Wales and the use of rapid weekly mortality estimates,” Euro Surveillance, vol. 10, no. 7, pp. 168–171, 2005.
[18]
P. Michelozzi, F. de Donato, L. Bisanti, et al., “The impact of the summer 2003 heat waves on mortality in four Italian cities,” Euro Surveillance, vol. 10, no. 7, pp. 161–165, 2005.
[19]
P. Pirard, S. Vandentorren, M. Pascal, et al., “Summary of the mortality impact assessment of the 2003 heat wave in France,” Euro Surveillance, vol. 10, no. 7, pp. 153–156, 2005.
[20]
United Nations Human Settlements Program, “Human Settlements Basic Statistics,” 1997, http://www.unhabitat.org/unchs/english/stats/contents.htm.
[21]
W. F. Dabberdt, J. Hales, S. Zubrick, et al., “Forecast issues in the urban zone: report of the 10th prospectus development team of the U.S. weather research program,” Bulletin of the American Meteorological Society, vol. 81, no. 9, pp. 2047–2064, 2000.
[22]
United Nations, “World Urbanization Prospects—2003 Revision,” 2003, http://www.un.org/esa/population/publications/wup2003/2003wup.htm.
[23]
S. A. Changnon, “Inadvertent weather modification in urban areas: lessons for global climate change,” Bulletin of the American Meteorological Society, vol. 73, no. 5, pp. 619–627, 1992.
[24]
R. Bornstein, “Observations of the urban heat island effect in New York City,” Journal of Applied Meteorology, vol. 7, pp. 575–582, 1968.
[25]
S. Grimmond, “Urbanization and global environmental change: local effects of urban warming,” Geographical Journal, vol. 173, no. 1, pp. 83–88, 2007.
[26]
L. C. Nkemdirim, “A test of a lapse rate/wind speed model for estimating heat island magnitude in an urban airshed,” Journal of Applied Meteorology, vol. 19, no. 6, pp. 748–756, 1980.
[27]
T. R. Oke, “The urban energy balance,” Progress in Physical Geography, vol. 12, no. 4, pp. 471–508, 1988.
[28]
J. Lu and S. P. Arya, “A laboratory study of the urban heat island in a calm and stably stratified environment—part I: temperature field,” Journal of Applied Meteorology, vol. 36, pp. 1377–1391, 1997.
[29]
T. R. Oke, R. A. Spronken-Smith, E. Jáuregui, and C. S. Grimmond, “The energy balance of central Mexico City during the dry season,” Atmospheric Environment, vol. 33, no. 24-25, pp. 3919–3930, 1999.
[30]
T. W. Hawkins, A. J. Brazel, W. L. Stefanov, W. Bigler, and E. M. Saffell, “The role of rural variability in urban heat island determination for Phoenix, Arizona,” Journal of Applied Meteorology, vol. 43, no. 3, pp. 476–486, 2004.
[31]
C. J. G. Morris, I. Simmonds, and N. Plummer, “Quantification of the influence of wind and cloud on the nocturnal urban heat island of a large city,” Journal of Applied Meteorology, vol. 40, no. 2, pp. 169–182, 2001.
[32]
K. M. Hinkel, F. E. Nelson, A. E. Klene, and J. H. Bell, “The urban heat island in winter at Barrow, Alaska,” International Journal of Climatology, vol. 23, no. 15, pp. 1889–1905, 2003.
[33]
L. S. Kalkstein and R. E. Davis, “Weather and human mortality: an evaluation of demographic and interregional responses in the United States,” Annals of the Association of American Geographers, vol. 79, no. 1, pp. 44–64, 1989.
[34]
L. S. Kalkstein and J. S. Greene, “An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change,” Environmental Health Perspectives, vol. 105, no. 1, pp. 84–93, 1997.
[35]
C. Campetella and M. Rusticucci, “Synoptic analysis of an extreme heat wave over Argentina in March 1980,” Meteorological Applications, vol. 5, no. 3, pp. 217–226, 1998.
[36]
K. E. Smoyer-Tomic, R. Kuhn, and A. Hudson, “Heat wave hazards: an overview of heat wave impacts in Canada,” Natural Hazards, vol. 28, no. 2-3, pp. 463–485, 2003.
[37]
R. Basu and J. M. Samet, “Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence,” Epidemiologic Reviews, vol. 24, no. 2, pp. 190–202, 2002.
[38]
J. B. Basara, P. K. Hall Jr., A. J. Schroeder, B. G. Illston, and K. L. Nemunaitis, “Diurnal cycle of the Oklahoma City urban heat island,” Journal of Geophysical Research D, vol. 113, no. 20, Article ID D20109, 2008.
[39]
R. A. McPherson, C. A. Fiebrich, K. C. Crawford, et al., “Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 3, pp. 301–321, 2007.
[40]
T. R. Oke, Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites, WMO/TD, no. 1250, 2004.
[41]
J. B. Basara, B. G. Illston, C. A. Fiebrich, et al., “The Oklahoma City Micronet,” Meteorological Applications. In press.
[42]
B. Ackerman, “Temporal march of the Chicago heat island,” Journal of Climate & Applied Meteorology, vol. 24, no. 6, pp. 547–554, 1985.
[43]
Y. Kim and J. Baik, “Spatial and temporal structure of the urban heat island in Seoul,” Journal of Applied Meteorology, vol. 44, pp. 591–605, 2005.
[44]
A. J. Schroeder and J. B. Basara, “Challenges associated with classifying urban meteorological stations: the Oklahoma City Micronet example,” The Open Atmospheric Science Journal in review.
[45]
R. E. Davis, P. C. Knappenberger, P. J. Michaels, and W. M. Novicoff, “Changing heat-related mortality in the United States,” Environmental Health Perspectives, vol. 111, pp. 1712–1718, 2003.
[46]
S. Hajat, B. Armstrong, M. Baccini, et al., “Impact of high temperatures on mortality: is there an added heat wave effect?” Epidemiology, vol. 17, no. 6, pp. 632–638, 2006.
[47]
H. Kan, S. J. London, H. Chen, et al., “Diurnal temperature range and daily mortality in Shanghai, China,” Environmental Research, vol. 103, no. 3, pp. 424–431, 2007.
[48]
S. N. Gosling, J. A. Lowe, G. R. McGregor, M. Pelling, and B. D. Malamud, “Associations between elevated atmospheric temperature and human mortality: a critical review of the literature,” Climatic Change, vol. 92, no. 3-4, pp. 299–341, 2009.
[49]
R. G. Steadman, “The assessment of sultriness—part I: a temperature-humidity index based on human physiology and clothing science,” Journal of Applied Meteorology, vol. 18, no. 7, pp. 861–873, 1979.
[50]
L. Rothfusz, “The heat index “equation” (or, more than you ever wanted to know about heat index),” Technical Attachment SR 90-23, NWS, 1990.
[51]
L. S. Kalkstein and K. M. Valimont, “An evaluation of summer discomfort in the United States using a relative climatological index,” Bulletin, vol. 67, no. 7, pp. 842–848, 1986.
[52]
P. Michelozzi, U. Kirchmayer, K. Katsouyanni, et al., “Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design,” Environmental Health, vol. 6, article 12, 2007.
[53]
S. Conti, P. Meli, G. Minelli, et al., “Epidemiologic study of mortality during the summer 2003 heat wave in Italy,” Environmental Research, vol. 98, no. 3, pp. 390–399, 2005.
[54]
A. Russo and L. Bisanti, “Heat wave effect on frail population in metropolitan Milano, Italy,” Epidemiology, vol. 15, pp. 97–98, 2004.
[55]
J. M. Masterton and F. A. Richardson, Humidex: A Method of Quantifying Human Discomfort due to Excessive Heat and Humidity, Environment Canada, Atmospheric Environment Service, Ontario, Canada, 1979.
[56]
F. C. Curriero, K. S. Heiner, J. M. Samet, S. L. Zeger, L. Strug, and J. A. Patz, “Temperature and mortality in 11 cities of the eastern United States,” American Journal of Epidemiology, vol. 155, no. 1, pp. 80–87, 2002.
[57]
M. S. O'Neill, A. Zanobetti, and J. Schwartz, “Modifiers of the temperature and mortality association in seven US cities,” American Journal of Epidemiology, vol. 157, no. 12, pp. 1074–1082, 2003.
[58]
M. A. McGeehin and M. Mirabelli, “The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States,” Environmental Health Perspectives, vol. 109, supplement 2, pp. 185–189, 2001.
[59]
M. O'Neill, “Air conditioning and heat-related health effects,” Applied Environmental Science and Public Health, vol. 1, pp. 9–12, 2003.
[60]
M. Medina-Ramon, A. Zanobetti, D. P. Cavanagh, and J. Schwartz, “Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis,” Environmental Health Perspectives, vol. 114, pp. 1331–1336, 2006.
[61]
T. R. Karl and R. W. Knight, “The 1995 Chicago heat wave: how likely is a recurrence?” Bulletin of the American Meteorological Society, vol. 78, no. 6, pp. 1107–1119, 1997.
[62]
E. D. Hunt, J. B. Basara, and C. R. Morgan, “Significant inversions and rapid in situ cooling at a well-sited Oklahoma mesonet station,” Journal of Applied Meteorology and Climatology, vol. 46, no. 3, pp. 353–367, 2007.