Vertical and Horizontal Gradients in Aerosol Black Carbon and Its Mass Fraction to Composite Aerosols over the East Coast of Peninsular India from Aircraft Measurements
During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) experiment of ISRO-GBP, altitude profiles of mass concentrations of aerosol black carbon ( ) and total (composite) aerosols ( ) in the lower troposphere were made onboard an aircraft from an urban location, Chennai (13.04? , 80.17? ). The profiling was carried out up to 3?km (AGL) in eight levels to obtain higher resolution in altitude. Besides, to explore the horizontal gradient in the vertical profiles, measurements were made at two levels [500?m (within ABL) and 1500?m (above ABL)] from ~10? to 16 and ~80? to 84 . The profiles showed a significant vertical extent of aerosols over coastal and offshore regions around Chennai with BC concentrations (~2? g ) and its contribution to composite aerosols remaining at the same level (between 8 to 10% for ) as at the surface. Even though the values are not unusually high as far as an urban location is concerned, but their constancy throughout the vertical column will have important implications to climate impact of aerosols. 1. Introduction Direct radiative forcing due to black carbon (BC) aerosols crucially depends on the vertical profile of BC. Elevated BC layer over scattering aerosol/cloud layer will enhance the atmospheric forcing and can even reverse the “white house effect” [1]. Tripathi et al. [2] have reported that the difference in the short-wave, clear sky forcing between the steadily decreasing and increasing BC aloft is as much as a factor of 1.3. Lubin et al. [3] have shown that this difference can be as much as a factor of two in the case of long wave. Haywood and Ramaswamy [4] have reported from GCM simulation that the direct radiative forcing of a BC aerosol layer increases approximately by a factor of 5, as the layer is moved between the surface and 20?km. Based on model simulation and observation during INDOEX, Ackerman et al. [5] reported that enhanced layer of BC aerosols reduces the cloud cover by BC-induced atmospheric heating and hence offsets the aerosol-induced radiative cooling at the top of the atmosphere on a regional scale. Thus information on the altitude variation of BC and its mass fraction to total composite aerosols is very important in estimating its radiative forcing. Even though LIDAR can give information on the vertical distribution of scattering aerosol, it cannot give any information on the altitude distribution of absorbing aerosols. Thus, in situ measurement of absorbing aerosol such as BC from aircraft is very important. Such measurements are very limited worldwide, especially over India
References
[1]
S. K. Satheesh, “Aerosol radiative forcing over land: effect of surface and cloud reflection,” Annales Geophysicae, vol. 20, no. 12, pp. 2105–2109, 2002.
[2]
S. N. Tripathi, S. Dey, V. Tare, S. K. Satheesh, S. Lal, and S. Venkataramani, “Enhanced layer of black carbon in a north Indian industrial city,” Geophysical Research Letters, vol. 32, no. 12, Article ID L12802, 4 pages, 2005.
[3]
D. Lubin, S. K. Satheesh, G. McFarquar, and A. J. Heymsfield, “Longwave radiative forcing of Indian Ocean tropospheric aerosol,” Journal of Geophysical Research, vol. 107, article 8004, 13 pages, 2002.
[4]
J. M. Haywood and V. Ramaswamy, “Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols,” Journal of Geophysical Research, vol. 103, no. D6, pp. 6043–6058, 1998.
[5]
A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science, vol. 288, no. 5468, pp. 1042–1047, 2000.
[6]
K. K. Moorthy, S. S. Babu, S. V. Sunilkumar, P. K. Gupta, and B. S. Gera, “Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India,” Geophysical Research Letters, vol. 31, no. 22, Article ID L22103, 4 pages, 2004.
[7]
S. S. Babu, S. K. Satheesh, K. K. Moorthy, et al., “Aircraft measurements of aerosol black carbon from a coastal location in the north-east part of peninsular India during ICARB,” Journal of Earth System Science, vol. 117, supplement 1, pp. 263–271, 2008.
[8]
K. K. Moorthy, S. K. Satheesh, S. S. Babu, and C. B. S. Dutt, “Integrated campaign for aerosols, gases and radiation budget (ICARB): an overview,” Journal of Earth System, vol. 117, pp. 243–262, 2008.
[9]
A. D. A. Hansen, H. Rosen, and T. Novakov, “The aethalometer, an instrument for the real-time measurement of optical absorption by aerosol particles,” Science of the Total Environment, vol. 36, pp. 191–196, 1984.
[10]
H. Grimm and D. J. Eatough, “Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction,” Journal of the Air and Waste Management Association, vol. 59, no. 1, pp. 101–107, 2009.
[11]
E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, “Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers,” Journal of Aerosol Science, vol. 34, no. 10, pp. 1445–1463, 2003.
[12]
W. P. Arnott, K. Hamasha, H. Moosmüller, P. J. Sheridan, and J. A. Ogren, “Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer,” Aerosol Science and Technology, vol. 39, no. 1, pp. 17–29, 2005.
[13]
P. J. Sheridan, W. Patrick Arnott, J. A. Ogren, et al., “The reno aerosol optics study: an evaluation of aerosol absorption measurement methods,” Aerosol Science and Technology, vol. 39, no. 1, pp. 1–16, 2005.
[14]
C. E. Corrigan, V. Ramanathan, and J. J. Schauer, “Impact of monsoon transitions on the physical and optical properties of aerosols,” Journal of Geophysical Research, vol. 111, no. 18, Article ID D18208, 2006.
[15]
V. S. Nair, S. S. Babu, and K. K. Moorthy, “Aerosol characteristics in the marine atmospheric boundary layer over the Bay of Bengal and Arabian Sea during ICARB: spatial distribution and latitudinal and longitudinal gradients,” Journal of Geophysical Research, vol. 113, no. 15, Article ID D15208, 2008.
[16]
E. B. Pereira, A. W. Setzer, F. Gerab, P. E. Artaxo, M. C. Pereira, and G. Monroe, “Airborne measurements of aerosols from burning biomass in Brazil related to the TRACE A experiment,” Journal of Geophysical Research, vol. 101, no. 19, pp. 23983–23992, 1996.
[17]
T. Novakov, D. A. Hegg, and P. V. Hobbs, “Airborne measurements of carbonaceous aerosols on the East Coast of the United States,” Journal of Geophysical Research, vol. 102, no. 25, pp. 30023–30030, 1997.
[18]
A. Keil and J. M. Haywood, “Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: a case study based on measured aerosol and cloud properties,” Journal of Geophysical Research, vol. 108, no. D13, article 8467, 2003.
[19]
D. B. Subrahamanyam, K. Sen Gupta, S. Ravindran, and P. Krishnan, “Study of sea breeze and land breeze along the west coast of Indian sub-continent over the latitude range to during INDOEX IFP-99 (SK-141) cruise,” Current Science, vol. 80, pp. 85–88, 2001.
[20]
S. I. Rani, R. Ramachandran, D. B. Subrahamanyam, D. P. Alappattu, and P. K. Kunhikrishnan, “Characterization of sea/land breeze circulation along the west coast of Indian sub-continent during pre-monsoon season,” Atmospheric Research, vol. 95, no. 4, pp. 367–378, 2010.
[21]
V. Manghnani, S. Raman, D. S. Niyogi, et al., “Marine boundary-layer variability over the Indian Ocean during INDOEX (1998),” Boundary-Layer Meteorology, vol. 97, no. 3, pp. 411–430, 2000.
[22]
K. K. Moorthy, S. S. Babu, K. V. Badarinath, S. V. Sunilkumar, T. R. Kiranchand, and Y. N. Ahmed, “Latitudinal distribution of aerosol black carbon and its mass fraction to composite aerosols over peninsular India during winter season,” Geophysical Research Letters, vol. 34, no. 8, Article ID L08802, 2007.