全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Orography-Induced Gravity Wave Drag Parameterization in the Global WRF: Implementation and Sensitivity to Shortwave Radiation Schemes

DOI: 10.1155/2010/959014

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the implementation of the orographic gravity wave drag (GWDO) processes induced by subgrid-scale orography in the global version of the Weather Research and Forecasting (WRF) model. The sensitivity of the model simulated climatology to the representation of shortwave radiation and the addition of the GWDO processes is investigated using the Kim-Arakawa GWDO parameterization and the Goddard, RRTMG (Rapid Radiative Transfer Model for GCMs), and Dudhia shortwave radiation schemes. This sensitivity study is a part of efforts of selecting the physics package that can be useful in applying the WRF model to global and seasonal configuration. The climatology is relatively well simulated by the global WRF; the zonal mean zonal wind and temperature structures are reasonably represented with the Kim-Arakawa GWDO scheme using the Goddard and RRTMG shortwave schemes. It is found that the impact of the shortwave radiation scheme on the modeled atmosphere is pronounced in the upper atmospheric circulations above the tropopause mainly due to the ozone heating. The scheme that excludes the ozone process suffers from a distinct cold bias in the stratosphere. Moreover, given the improper thermodynamic environment conditions by the shortwave scheme, the role of the GWDO process is found to be limited. 1. Introduction The Weather Research and Forecasting (WRF) model has been evaluated in terms of regional modeling for both research and operational applications since it was first released in 2000. The capability of the regional WRF model is established over a wide temporal range; from short-range forecasts such as simulations of localized heavy rainfall and snowfall within a couple of days over Korea (i.e., [1, 2]), 36-h real time forecasts in the United States [3], and simulations of typhoon and hurricane that affect synoptic fields for several days (i.e., [4, 5]), to regional climate simulations of such as U.S. warm-season precipitation and East-Asia summer monsoon circulations (i.e., [6, 7]). These studies support the satisfactory performance of the WRF model in various regions over the globe. With the verification of the regional WRF model performance, National Center for Atmospheric Research (NCAR) researchers tested the ability of the WRF model to cover the global domain. It is noticed that a global version of WRF was first developed to study atmospheres on Mars and other planets by Mark Richardson and colleagues at California Institute of Technology, and researchers in NCAR Mesoscale and Microscale Meteorology (MMM) Division extended that version

References

[1]  S.-Y. Hong and J.-W. Lee, “Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea,” Atmospheric Research, vol. 93, no. 4, pp. 818–831, 2009.
[2]  K.-S. Lim and S.-Y. Hong, “Numerical simulation of heavy snowfall over the Ho-Nam province of Korea in December 2005,” Journal of the Korean Meteorological Society, vol. 43, no. 2, pp. 161–173, 2007.
[3]  M. L. Weisman, C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, “Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model,” Weather and Forecasting, vol. 23, no. 3, pp. 407–437, 2008.
[4]  G. Jianfeng, Q. Xiao, Y.-H. Kuo, D. M. Barker, X. Jishan, and M. Xiaoxing, “Assimilation and simulation of typhoon Rusa (2002) using the WRF system,” Advances in Atmospheric Sciences, vol. 22, no. 3, pp. 415–427, 2005.
[5]  X. Li and Z. Pu, “Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations,” Monthly Weather Review, vol. 136, no. 12, pp. 4819–4838, 2008.
[6]  M. S. Bukovsky and D. J. Karoly, “Precipitation simulations using WRF as a nested regional climate model,” Journal of Applied Meteorology and Climatology, vol. 48, no. 10, pp. 2152–2159, 2009.
[7]  S.-R. Ham, S.-J. Park, C.-H. Bang, B.-J. Jung, and S.-Y. Hong, “Intercomparison of the East-Asian summer monsoon on 11-18 July 2004, simulated by WRF, MM5, and RSM models,” Atmosphere, vol. 15, no. 2, pp. 91–99, 2005.
[8]  W.-C. Skamarock, “Global WRF development,” in Proceedings of the 9th WRF User's Workshop, Boulder, Colo, USA, June 2008.
[9]  Y.-J. Kim, S. D. Eckermann, and H.-Y. Chun, “An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models,” Atmosphere-Ocean, vol. 41, no. 1, pp. 65–98, 2003.
[10]  T. N. Palmer, G. J. Shutts, and R. Swinbank, “Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization,” Quarterly Journal of the Royal Meteorological Society, vol. 112, no. 474, pp. 1001–1039, 1986.
[11]  N. A. McFarlane, “The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere,” Journal of the Atmospheric Sciences, vol. 44, no. 14, pp. 1775–1800, 1987.
[12]  Y.-J. Kim and A. Arakawa, “Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model,” Journal of the Atmospheric Sciences, vol. 52, no. 11, pp. 1875–1902, 1995.
[13]  S.-Y. Hong, J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, “Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model,” Weather and Forecasting, vol. 23, no. 3, pp. 523–531, 2008.
[14]  W. C. Skamarock, J.-B. Klemp, J. Dudhia, et al., “A description of the advanced research WRF version 3,” Tech. Rep. NCAR/TN-475+STR, 2008.
[15]  Y.-J. Kim and J. D. Doyle, “Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 609, pp. 1893–1921, 2005.
[16]  Y.-J. Kim and S.-Y. Hong, “Interaction between the orography-induced gravity wave drag and boundary layer processes in a global atmospheric model,” Geophysical Research Letters, vol. 36, Article ID L12809, 2009.
[17]  S.-Y. Hong, “New global orography data sets,” Office Note 424, NCEP, Camp Springs, Md, USA, 1999.
[18]  E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research, vol. 102, no. 14, pp. 16663–16682, 1997.
[19]  S.-Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Monthly Weather Review, vol. 134, no. 9, pp. 2318–2341, 2006.
[20]  F. Chen and J. Dudhia, “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity,” Monthly Weather Review, vol. 129, no. 4, pp. 569–585, 2001.
[21]  G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophysical Research Letters, vol. 29, no. 14, 1693, 2002.
[22]  S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Monthly Weather Review, vol. 132, no. 1, pp. 103–120, 2004.
[23]  M.-D. Chou and M. J. Suarez, “A solar radiation parameterization for atmospheric studies,” Technical Report Series on Global Modeling and Data Assimilation 104606, 1999.
[24]  J. Dudhia, “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,” Journal of the Atmospheric Sciences, vol. 46, no. 20, pp. 3077–3107, 1989.
[25]  M.-D. Chou, “A solar radiation model for use in climate studies,” Journal of the Atmospheric Sciences, vol. 49, no. 9, pp. 762–772, 1992.
[26]  M.-D. Chou and K.-T. Lee, “Parameterizations for the absorption of solar radiation by water vapor and ozone,” Journal of the Atmospheric Sciences, vol. 53, no. 8, pp. 1203–1208, 1996.
[27]  J. C. Alpert, M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, “Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model,” in Proceedings of the 8th Conference on Numerical Weather Prediction, pp. 726–733, American Meteorological Society, Baltimore, Md, USA, 1988.
[28]  R. J. Zamora, S. Solomon, E. G. Dutton, et al., “Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidants studies,” Journal of Geophysical Research, vol. 108, no. D2, 4050, 2003.
[29]  Y.-J. Kim, J. D. Farrara, and C. R. Mechoso, “Sensitivity of AGCM simulations to modifications in the ozone distribution and refinements in selected physical parameterizations,” Journal of the Meteorological Society of Japan, vol. 76, no. 5, pp. 695–709, 1998.
[30]  A. Shimpo, M. Kanamitsu, S. F. Iacobellis, and S.-Y. Hong, “Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature,” Monthly Weather Review, vol. 136, no. 7, pp. 2557–2575, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133