全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Land Use Change on the Local Climate over the Tibetan Plateau

DOI: 10.1155/2010/837480

Full-Text   Cite this paper   Add to My Lib

Abstract:

Observational data show that the remotely sensed leaf area index (LAI) has a significant downward trend over the east Tibetan Plateau (TP), while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM) version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers) Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase. 1. Introduction It has become apparent that climate change over high-elevation regions is occurring at a faster rate than over low-elevation regions [1]. This high-elevation rate of change often generates stronger disturbances within the climate system than low-elevation changes [2]. The Tibetan Plateau (TP) is an immense upland area ( ), with an average elevation greater than 5,000?m. Over the TP, 46% of the forest cover and 50% of the grassland have been converted to farmland, urban areas, or desert during the last century (X. Liu, personal communication). The TP is the source of snowmelt runoff, supplying water resources to users in China and surrounding areas. The mechanisms influencing the observed rapid climate change and their impacts at this high-elevation region are not well understood. In order to reduce these types of uncertainties and provide society with more reliable projections of future outcomes, detection and analysis of these processes need to be determined. Many researchers have shown that land use and land cover change has remarkab interacts with climate systems [3, 4]. A statistical analysis of the southern half of the Central Valley was performed by Christy et al. [5] using high-quality temperature observations for the San Joaquin Valley in California, where land use has changed dramatically since the presettlement (circa 1860s), due to extensive agricultural expansion. Their study indicated that

References

[1]  H. F. Diaz and R. S. Bradley, “Temperature variations during the last century at high elevation sites,” Climatic Change, vol. 36, no. 3-4, pp. 253–279, 1997.
[2]  J. Jin and N. L. Miller, “Toward understanding the role of ground water in hydroclimate over the Merced watershed using a single column climate model,” in The American Geophysical Union Fall Meeting, San Francisco, Calif, USA, December 2006.
[3]  Q. Li and Y. Xue, “Simulated impacts of land cover change on summer climate in the Tibetan Plateau,” Environmental Research Letters, vol. 5, no. 1, Article ID 015102, 2010.
[4]  X. Cui, H.-F. Graf, B. Langmann, W. Chen, and R. Huang, “Climate impacts of anthropogenic land use changes on the Tibetan Plateau,” Global and Planetary Change, vol. 54, no. 1-2, pp. 33–56, 2006.
[5]  J. R. Christy, W. B. Norris, K. Redmond, and K. P. Gallo, “Methodology and results of calculating central California surface temperature trends: evidence of human-induced climate change?” Journal of Climate, vol. 19, no. 4, pp. 548–563, 2006.
[6]  J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14288–14293, 2006.
[7]  J. T. Houghton, Y. Ding, D. J. Griggs, et al., Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2001.
[8]  L. M. Kueppers, M. A. Snyder, and M. A. Snyder, “Seasonal temperature responses to land use change in the western United States,” Global and Planetary Change, vol. 60, no. 3-4, pp. 250–264, 2008.
[9]  P. K. Snyder, C. Delire, and J. A. Foley, “Evaluating the influence of different vegetation biomes on the global climate,” Climate Dynamics, vol. 23, no. 3-4, pp. 279–302, 2004.
[10]  J. J. Feddema, K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, and W. M. Washington, “Atmospheric science: the importance of land cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005.
[11]  O. W. Frauenfeld, T. Zhang, and M. C. Serreze, “Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau,” Journal of Geophysical Research D, vol. 110, no. 2, pp. 1–9, 2005.
[12]  K. W. Oleson, Y. Dai, G. Bonan, et al., “Technical description of the community land model (CLM),” Technical Note NCAR/TN-461+STR, NCAR, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133