Two case studies are discussed that evaluate the effect of ocean emissions on aerosol-cloud interactions. A review of the first case study from the eastern Pacific Ocean shows that simultaneous aircraft and space-borne observations are valuable in detecting links between ocean biota emissions and marine aerosols, but that the effect of the former on cloud microphysics is less clear owing to interference from background anthropogenic pollution and the difficulty with field experiments in obtaining a wide range of aerosol conditions to robustly quantify ocean effects on aerosol-cloud interactions. To address these limitations, a second case was investigated using remote sensing data over the less polluted Southern Ocean region. The results indicate that cloud drop size is reduced more for a fixed increase in aerosol particles during periods of higher ocean chlorophyll A. Potential biases in the results owing to statistical issues in the data analysis are discussed. 1. Introduction Since oceans cover ~70% of the earth surface, they represent a massive source of gaseous and aerosol emissions that mix with ship and continental emissions to form a highly complex soup of marine aerosol particles. Aerosols directly interact with solar radiation via scattering and absorption of light, and they also serve as cloud condensation nuclei (CCN) and influence cloud properties and reflectivity. Attention to the importance of aerosols in cloud and rain formation can be traced back several decades ago to observations that maritime clouds exhibit lower droplet concentrations than similar clouds influenced by anthropogenic emissions over continental areas, and that the maritime clouds often rain in less than 30 minutes [1–3]. Since that time, research has pointed to two critical pieces of information linking aerosols to warm clouds: (i) more numerous subcloud aerosol particles result in more reflective clouds (all else being fixed) because of more abundant and smaller cloud droplets [4] and (ii) for more numerous and smaller cloud droplets, suppressed droplet collision-coalescence results in less precipitation [5]. But observational and modeling studies often provide conflicting results with regard to the magnitude and even the sign of aerosol effects on clouds and precipitation [6]. Furthermore, aerosol-cloud interactions represent the largest uncertainty in assessments of the total anthropogenic radiative forcing [7]. As shown in Figure 1 (see red arrows), aerosols are at the heart of the effect of ocean emissions on cloud properties. The sources and nature of marine
References
[1]
P. Squires, “The microstructure of cumuli in maritime and continental air,” Tellus, vol. 8, pp. 443–444, 1956.
[2]
P. Squires, “Penetrative downdraughts in cumuli,” Tellus, vol. 10, pp. 381–389, 1958.
[3]
P. Squires and S. Twomey, “A comparison of cloud nucleus measurements over central north america and caribbean sea,” Journal of the Atmospheric Sciences, vol. 23, pp. 401–404, 1966.
[4]
S. Twomey, “Influence of pollution on shortwave albedo of clouds,” Journal of the Atmospheric Sciences, vol. 34, pp. 1149–1152, 1977.
[5]
B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science, vol. 245, no. 4923, pp. 1227–1230, 1989.
[6]
A. P. Khain, “Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review,” Environmental Research Letters, vol. 4, no. 1, Article ID 015004, 2009.
[7]
IPCC, “Summary for policymakers,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, et al., Eds., Cambridge University Press, New York, NY, USA, 2007.
[8]
A. H. Goldstein and I. E. Galbally, “Known and unexplored organic constituents in the earth's atmosphere,” Environmental Science and Technology, vol. 41, no. 5, pp. 1514–1521, 2007.
[9]
M. O. Andreae and H. Raemdonck, “Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view,” Science, vol. 221, no. 4612, pp. 744–747, 1983.
[10]
G. E. Shaw, “Bio-controlled thermostasis involving the sulfur cycle,” Climatic Change, vol. 5, no. 3, pp. 297–303, 1983.
[11]
R. J. Charlson, J. E. Lovelock, M. O. Andreae, and S. G. Warren, “Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate,” Nature, vol. 326, no. 6114, pp. 655–661, 1987.
[12]
M. Claeys, B. Graham, G. Vas et al., “Formation of secondary organic aerosols through photooxidation of isoprene,” Science, vol. 303, no. 5661, pp. 1173–1176, 2004.
[13]
N. Meskhidze and A. Nenes, “Phytoplankton and cloudiness in the southern ocean,” Science, vol. 314, no. 5804, pp. 1419–1423, 2006.
[14]
S. R. Arnold, D. V. Spracklen, J. Williams et al., “Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol,” Atmospheric Chemistry and Physics, vol. 9, no. 4, pp. 1253–1262, 2009.
[15]
S. Ekstr?m, B. Nozière, and H.-C. Hansson, “The cloud condensation nuclei (CCN) properties of 2-methyltetrols and polyols from osmolality and surface tension measurements,” Atmospheric Chemistry and Physics, vol. 9, no. 3, pp. 973–980, 2009.
[16]
M. C. Facchini, S. Decesari, M. Rinaldi et al., “Important source of marine secondary organic aerosol from biogenic amines,” Environmental Science and Technology, vol. 42, no. 24, pp. 9116–9121, 2008.
[17]
A. Sorooshian, L. T. Padró, A. Nenes, et al., “On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California,” Global Biogeochemical Cycles, vol. 23, no. 4, Article ID GB4007, p. 15, 2009.
[18]
C. D. O'Dowd and G. de Leeuw, “Marine aerosol production: a review of the current knowledge,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1856, pp. 1753–1774, 2007.
[19]
J. Liggio, S.-M. Li, and R. McLaren, “Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters,” Environmental Science and Technology, vol. 39, no. 6, pp. 1532–1541, 2005.
[20]
R. Volkamer, P. J. Ziemann, and M. J. Molina, “Secondary organic aerosol formation from acetylene (C2H 2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase,” Atmospheric Chemistry and Physics, vol. 9, no. 4, pp. 1907–19028, 2009.
[21]
A. L. Corrigan, S. W. Hanley, and D. O. De Haan, “Uptake of glyoxal by organic and inorganic aerosol,” Environmental Science and Technology, vol. 42, no. 12, pp. 4428–4433, 2008.
[22]
C. J. Hennigan, M. H. Bergin, J. E. Dibb, and R. J. Weber, “Enhanced secondary organic aerosol formation due to water uptake by fine particles,” Geophysical Research Letters, vol. 35, no. 18, Article ID L18801, 5 pages, 2008.
[23]
J. D. Blando and B. J. Turpin, “Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility,” Atmospheric Environment, vol. 34, no. 10, pp. 1623–1632, 2000.
[24]
P. Warneck, “In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere,” Atmospheric Environment, vol. 37, no. 17, pp. 2423–2427, 2003.
[25]
K. K. Crahan, D. Hegg, D. S. Covert, and H. Jonsson, “An exploration of aqueous oxalic acid production in the coastal marine atmosphere,” Atmospheric Environment, vol. 38, no. 23, pp. 3757–3764, 2004.
[26]
B. Ervens, G. Feingold, G. J. Frost, and S. M. Kreidenweis, “A modeling of study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production,” Journal of Geophysical Research, vol. 109, no. 15, Article ID D15205, 20 pages, 2004.
[27]
J. Z. Yu, X.-F. Huang, J. Xu, and M. Hu, “When aerosol sulfate goes up, so does oxalate: implication for the formation mechanisms of oxalate,” Environmental Science and Technology, vol. 39, no. 1, pp. 128–133, 2005.
[28]
A. Sorooshian, V. Varutbangkul, F. J. Brechtel et al., “Oxalic acid in clear and cloudy atmospheres: analysis of data from international consortium for atmospheric research on transport and transformation 2004,” Journal of Geophysical Research, vol. 111, no. 23, Article ID D23S45, 17 pages, 2006.
[29]
A. Sorooshian, M.-L. Lu, F. J. Brechtel et al., “On the source of organic acid aerosol layers above clouds,” Environmental Science and Technology, vol. 41, no. 13, pp. 4647–4654, 2007.
[30]
A. G. Carlton, B. J. Turpin, K. E. Altieri et al., “Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments,” Atmospheric Environment, vol. 41, no. 35, pp. 7588–7602, 2007.
[31]
K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein, and A. G. Marshall, “Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry,” Atmospheric Environment, vol. 42, no. 7, pp. 1476–1490, 2008.
[32]
M. L. Wells and E. D. Goldberg, “Occurrence of small colloids in sea water,” Nature, vol. 353, no. 6342, pp. 342–344, 1991.
[33]
M. L. Wells and E. D. Goldberg, “Colloid aggregation in seawater,” Marine Chemistry, vol. 41, no. 4, pp. 353–358, 1993.
[34]
R. Benner, J. D. Pakulski, M. McCarthy, J. I. Hedges, and P. G. Hatcher, “Bulk chemical characteristics of dissolved organic matter in the ocean,” Science, vol. 255, no. 5051, pp. 1561–1564, 1992.
[35]
M. L. Wells, “Marine colloids—a neglected dimension,” Nature, vol. 391, no. 6667, pp. 530–531, 1998.
[36]
E. K. Bigg, C. Leck, and L. Tranvik, “Particulates of the surface microlayer of open water in the central Arctic Ocean in summer,” Marine Chemistry, vol. 91, no. 1–4, pp. 131–141, 2004.
[37]
C. Leck and E. K. Bigg, “Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer,” Tellus, Series B, vol. 57, no. 4, pp. 305–316, 2005.
[38]
C. Leck and E. K. Bigg, “Source and evolution of the marine aerosol—a new perspective,” Geophysical Research Letters, vol. 32, no. 19, Article ID L19803, 4 pages, 2005.
[39]
R. Jaenicke, “Abundance of cellular material and proteins in the atmosphere,” Science, vol. 308, no. 5718, 73 pages, 2005.
[40]
E. K. Bigg, “Sources, nature and influence on climate of marine airborne particles,” Environmental Chemistry, vol. 4, no. 3, pp. 155–161, 2007.
[41]
V. R. Després, J. F. Nowoisky, M. Klose, R. Conrad, M. O. Andreae, and U. P?schl, “Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes,” Biogeosciences, vol. 4, no. 6, pp. 1127–1141, 2007.
[42]
J. W. Fitzgerald, “Effect of aerosol composition on cloud droplet size distribution—numerical study,” Journal of the Atmospheric Sciences, vol. 31, pp. 1358–1367, 1974.
[43]
G. Feingold, “Modeling of the first indirect effect: analysis of measurement requirements,” Geophysical Research Letters, vol. 30, no. 19, pp. 7–4, 2003.
[44]
W. C. Conant, T. M. VanReken, T. A. Rissman et al., “Aerosol-cloud drop concentration closure in warm cumulus,” Journal of Geophysical Research, vol. 109, no. 13, Article ID D13204, 12 pages, 2004.
[45]
B. Ervens, G. Feingold, and S. M. Kreidenweis, “Influence of water-soluble organic carbon on cloud drop number concentration,” Journal of Geophysical Research, vol. 110, no. 18, Article ID D18211, 14 pages, 2005.
[46]
U. Dusek, G. P. Frank, L. Hildebrandt et al., “Size matters more than chemistry for cloud-nucleating ability of aerosol particles,” Science, vol. 312, no. 5778, pp. 1375–1378, 2006.
[47]
A. Nenes, R. J. Charlson, M. C. Facchini, M. Kulmala, A. Laaksonen, and J. H. Seinfeld, “Can chemical effects on cloud droplet number rival the first indirect effect?” Geophysical Research Letters, vol. 29, no. 17, article 1848, 4 pages, 2002.
[48]
T. M. VanReken, T. A. Rissman, G. C. Roberts et al., “Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE,” Journal of Geophysical Research, vol. 108, no. D20, article 4633, 18 pages, 2003.
[49]
P. S. K. Liu, W. R. Leaitch, C. M. Banic, S.-M. Li, D. Ngo, and W. J. Megaw, “Aerosol observations at chebogue point during the 1993 North Atlantic regional experiment: relationships among cloud condensation nuclei, size distribution, and chemistry,” Journal of Geophysical Research, vol. 101, no. 22, pp. 28971–28990, 1996.
[50]
D. S. Covert, J. L. Gras, A. Wiedensohler, and F. Stratmann, “Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania,” Journal of Geophysical Research, vol. 103, no. 13, pp. 16597–16608, 1998.
[51]
W. Cantrell, G. Shaw, G. R. Cass et al., “Closure between aerosol particles and cloud condensation nuclei at kaashidhoo climate observatory,” Journal of Geophysical Research, vol. 106, no. 22, pp. 28711–28718, 2001.
[52]
J. R. Snider, S. Guibert, J.-L. Brenguier, and J.-P. Putaud, “Aerosol activation in marine stratocumulus clouds: 2. K?hler and parcel theory closure studies,” Journal of Geophysical Research, vol. 108, no. 15, article 8629, 23 pages, 2003.
[53]
S. Twomey and J. Warner, “Comparison of measurements of cloud droplets and cloud nuclei,” Journal of the Atmospheric Sciences, vol. 24, pp. 702–703, 1967.
[54]
J. W. Fitzgerald and P. Spyers-Duran, “Changes in cloud nucleus concentration and cloud droplet size distribution associated with pollution from St. Louis,” Journal of Applied Meteorology, vol. 30, pp. 511–516, 1973.
[55]
J. R. Snider and J.-L. Brenguier, “Cloud condensation nuclei and cloud droplet measurements during ACE-2,” Tellus, Series B, vol. 52, no. 2, pp. 828–842, 2000.
[56]
B. Stevens and G. Feingold, “Untangling aerosol effects on clouds and precipitation in a buffered system,” Nature, vol. 461, no. 7264, pp. 607–613, 2009.
[57]
G. L. Stephens, D. G. Vane, R. J. Boain et al., “The cloudsat mission and the a-train: a new dimension of space-based observations of clouds and precipitation,” Bulletin of the American Meteorological Society, vol. 83, no. 12, pp. 1771–1742, 2002.
[58]
A. Sorooshian, F. J. Brechtel, Y. L. Ma, et al., “Modeling and characterization of a particle-into-liquid sampler (PILS),” Aerosol Science and Technology, vol. 40, pp. 396–409, 2006.
[59]
G. C. Roberts and A. Nenes, “A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements,” Aerosol Science and Technology, vol. 39, no. 3, pp. 206–221, 2005.
[60]
L. A. Remer, Y. J. Kaufman, D. Tanré et al., “The MODIS aerosol algorithm, products, and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp. 947–973, 2005.
[61]
S. Platnick, M. D. King, S. A. Ackerman et al., “The MODIS cloud products: algorithms and examples from terra,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 2, pp. 459–473, 2003.
[62]
S. A. Klein and D. L. Hartmann, “The seasonal cycle of low stratiform clouds,” Journal of Climate, vol. 6, no. 8, pp. 1587–1606, 1993.
[63]
M. D. Lebsock, G. L. Stephens, and C. Kummerow, “The seasonal cycle of low stratiform clouds,” Journal of Geophysical Research, vol. 113, no. 8, Article ID D15205, 12 pages, 2008.
[64]
A. Sorooshian, S. M. Murphy, S. Hersey et al., “Comprehensive airborne characterization of aerosol from a major bovine source,” Atmospheric Chemistry and Physics, vol. 8, no. 17, pp. 5489–5520, 2008.
[65]
S. M. Murphy, A. Sorooshian, J. H. Kroll, et al., “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmospheric Chemistry and Physics, vol. 7, no. 9, pp. 2313–2337, 2007.
[66]
M. A. Miller and S. E. Yuter, “Lack of correlation between chl A and cloud droplet effective radius in shallow marine clouds,” Geophysical Research Letters, vol. 35, Article ID L13807, 7 pages, 2008.
[67]
G. Feingold, L. A. Remer, J. Ramaprasad, and Y. J. Kaufman, “Analysis of smoke impact on clouds in Brazilian biomass burning regions: an extension of Twomey's approach,” Journal of Geophysical Research, vol. 106, no. 19, pp. 22907–22922, 2001.
[68]
G. P. Ayers and J. L. Gras, “Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air,” Nature, vol. 353, no. 6347, pp. 834–835, 1991.
[69]
S. S. Yum and J. G. Hudson, “Wintertime/summertime contrasts of cloud condensation nuclei and cloud microphysics over the Southern Ocean,” Journal of Geophysical Research, vol. 109, no. 6, Article ID D06204, 14 pages, 2004.
[70]
F.-M. Bréon, D. Tanré, and S. Generoso, “Aerosol effect on cloud droplet size monitored from satellite,” Science, vol. 295, no. 5556, pp. 834–838, 2002.
[71]
T. Matsui, H. Masunaga, R. A. Pielke Sr., and W.-K. Tao, “Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system,” Geophysical Research Letters, vol. 31, no. 6, Article ID L06109, 4 pages, 2004.
[72]
J. Quaas, O. Boucher, and F.-M. Bréon, “Aerosol indirect effects in POLDER satellite data and the laboratoire de Météorologie dynamique-zoom (LMDZ) general circulation model,” Journal of Geophysical Research, vol. 109, no. 8, Article ID D08205, 9 pages, 2004.
[73]
E. J. Hoffman and R. A. Duce, “Factors influencing the organic carbon content of marine aerosols: a laboratory study,” Journal of Geophysical Research, vol. 81, no. 21, pp. 3667–3670, 1976.
[74]
R. M. Gershey, “Characterization of seawater organic-matter carried by bubble-generated aerosols,” Limnology and Oceanography, vol. 28, pp. 309–319, 1983.
[75]
D. C. Blanchard, “The ejection of drops from the sea and their enrichment with bacteria and other materials: a review,” Estuaries, vol. 12, no. 3, pp. 127–137, 1989.
[76]
R. S. Tseng, J. T. Viechnicki, R. A. Skop, and J. W. Brown, “Sea-to-air transfer of surface-active organic compounds by bursting bubbles,” Journal of Geophysical Research, vol. 97, no. 4, pp. 5201–5206, 1992.
[77]
A. M. Middlebrook, D. M. Murphy, and D. S. Thomson, “Observations of organic material in individual marine particles at cape grim during the first aerosol characterization experiment (ACE 1),” Journal of Geophysical Research, vol. 103, no. 13, pp. 16475–16483, 1998.
[78]
C. D. O'Dowd, M. C. Facchini, F. Cavalli et al., “Biogenically driven organic contribution to marine aerosol,” Nature, vol. 431, no. 7009, pp. 676–680, 2004.
[79]
G. J. Roelofs, “A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation,” Atmospheric Chemistry and Physics, vol. 8, no. 3, pp. 709–719, 2008.
[80]
D. V. Spracklen, S. R. Arnold, J. Sciare, K. S. Carslaw, and C. Pio, “Globally significant oceanic source of organic carbon aerosol,” Geophysical Research Letters, vol. 35, no. 12, Article ID L12811, 5 pages, 2008.
[81]
B. Langmann, C. Scannell, and C. O'Dowd, “New directions: organic matter contribution to marine aerosols and cloud condensation nuclei,” Atmospheric Environment, vol. 42, no. 33, pp. 7821–7822, 2008.
[82]
C. D. O'Dowd, B. Langmann, S. Varghese, C. Scannell, D. Ceburnis, and M. C. Facchini, “A combined organic-inorganic sea-spray source function,” Geophysical Research Letters, vol. 35, no. 1, Article ID L01801, 5 pages, 2008.
[83]
B. Gantt, N. Meskhidze, and D. Kamykowki, “A new physically-based quantification of isoprene and primary organic aerosol emissions from the world's oceans,” Atmospheric Chemistry and Physics, vol. 9, pp. 4915–4927, 2009.
[84]
B. Gantt, N. Meskhidze, Y. Zhang, and J. Xu, “The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States,” Atmospheric Environment, vol. 44, no. 1, pp. 115–121, 2009.