We investigated the impact of variations in oceanic preexisting conditions on predictions of Typhoon Hai-Tang (2005) by using a coupled atmosphere-ocean model with 6-km horizontal resolution and providing the oceanic initial conditions on 12 July from 1997 to 2005 to the model. Variations in oceanic preexisting conditions caused variation in predicted central pressure of nearly 18?hPa at 72?h, whereas sea-surface cooling (SSC) induced by Hai-Tang caused a predicted central pressure difference of about 40?hPa. Warm-core oceanic eddies up to a few hundred kilometers across and a deep mixed layer climatologically distributed in the western North Pacific led to high mixed-layer heat potential, which increased latent heat flux, water vapor, and liquid water contents around Hai-Tang's center. These increases were closely associated with Hai-Tang's intensification. SSC negatively affected the eyewall, whereas variations in oceanic preexisting conditions remarkably affected spiral rainbands and the magnitude of SSC. 1. Introduction Advances in ocean data assimilation systems have enabled us to further understand tropical cyclone (TC) activity and the ocean response at weather-forecasting as well as seasonal to climate time scales. The relationships between TC activity and variations in the global ocean are of growing interest on seasonal to climate time scales. In contrast, TC-induced sea-surface cooling (SSC), the decrease in sea-surface temperature (SST) during and after the passage of a TC in general, is a well-known ocean response to a TC on a weather-forecasting scale. Previous studies reported that SSC varied depending on oceanic preexisting conditions [1] as well as on TC intensity and translation speed [2]. However, the dynamic and thermodynamic processes associated with SSC remain controversial [1, 3, 4] although vertical turbulent mixing and upwelling are known to be important [2]. According to our current understanding of the relationship between TC activity and ocean thermal forcing, not only SST but also temperature and salinity profiles in the upper ocean are important for determining TC intensity, whereas SSC slightly affects TC track prediction [5]. TC heat potential (TCHP), a measure of the oceanic heat content from the surface to the C isotherm depth (Z26), is highly correlated with TC intensity in the western North Pacific (WNP) on seasonal to climate time scales [6, 7]. TCs tend to rapidly intensify in the WNP when they pass over a region with a high TCHP and a deep Z26. Providing accurate oceanic preexisting conditions as oceanic initial
References
[1]
Z.-W. Zheng, C.-R. Ho, and N.-J. Kuo, “Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang,” Geophysical Research Letters, vol. 35, no. 20, Article ID L20603, 2008.
[2]
A. Wada, H. Niino, and H. Nakano, “Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998),” Journal of Oceanography, vol. 65, no. 3, pp. 373–396, 2009.
[3]
A. Wada, K. Sato, N. Usui, and Y. Kawai, “Comment on “Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang” by Z.-W. Zheng, C.-R. Ho, and N.-J. Kuo,” Geophysical Research Letters, vol. 36, no. 9, Article ID L09603, 2009.
[4]
C.-R. Ho, Q. Zheng, Z.-W. Zheng, N.-J. Kuo, C.-K. Tai, and F.-C. Su, “Reply to comment by A. Wada et al. on “Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang”,” Geophysical Research Letters, vol. 36, no. 9, Article ID L09604, 2009.
[5]
A. Wada, “Numerical problems associated with tropical cyclone intensity prediction using a sophisticated coupled typhoon-ocean model,” Papers in Meteorology and Geophysics, vol. 58, pp. 103–126, 2007.
[6]
A. Wada and N. Usui, “Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the Western North Pacific,” Journal of Oceanography, vol. 63, no. 3, pp. 427–447, 2007.
[7]
A. Wada and J. C. L. Chan, “Relationship between typhoon activity and upper ocean heat content,” Geophysical Research Letters, vol. 35, no. 17, Article ID L17603, 2008.
[8]
A. Wada, “Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropical-cyclone-like vortex and its relation to initial sea-surface temperature and vortex-induced sea-surface cooling,” Journal of Geophysical Research, vol. 114, no. 18, Article ID D18111, 2009.
[9]
I. Ginis, “Ocean response to tropical cyclone,” in Global Perspective on Tropical Cyclones, R. L. Elsberry, Ed., pp. 198–260, WMO/TD-No. 693, Geneva, Switzerland, 1995.
[10]
N. Usui, S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and M. Kamachi, “Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results,” Advances in Space Research, vol. 37, no. 4, pp. 806–822, 2006.
[11]
K. Saito, T. Fujita, Y. Yamada et al., “The operational JMA nonhydrostatic mesoscale model,” Monthly Weather Review, vol. 134, no. 4, pp. 1266–1298, 2006.
[12]
A. Wada and Y. Kawai, “The development of diurnally-varying sea-surface temperature scheme. Part I. Preliminary numerical experiments,” CAS/JSC WGNE, Research Activities in Atmospheric and Ocean Modelling, vol. 39, no. 4, pp. 0907–0908, 2009.
[13]
Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameterization of the snow field in a cloud model,” Journal of Climate & Applied Meteorology, vol. 22, no. 6, pp. 1065–1092, 1983.
[14]
J. S. Kain and J. M. Fritsch, “A one-dimensional entraining/detraining plume model and its application in convective parameterization,” Journal of the Atmospheric Sciences, vol. 47, no. 23, pp. 2784–2802, 1990.
[15]
J. Kondo, “Air-sea bulk transfer coefficients in diabatic conditions,” Boundary-Layer Meteorology, vol. 9, no. 1, pp. 91–112, 1975.
[16]
J. B. Klemp and R. Wilhelmson, “The simulation of three-dimensional convective storm dynamics,” Journal of the Atmospheric Sciences, vol. 35, pp. 1070–1096, 1978.
[17]
J. W. Deardorff, “Stratocumulus-capped mixed layers derived from a three-dimensional model,” Boundary-Layer Meteorology, vol. 18, no. 4, pp. 495–527, 1980.
[18]
M. Sugi, K. Kuma, and K. Tada, “Description and performance of the JMA operational global spectral model (JMA-GSM88),” Geophysical Magazine, vol. 43, pp. 105–130, 1990.
[19]
A. Schiller and J. S. Godfrey, “A diagnostic model of the diurnal cycle of sea surface temperature for use in coupled ocean-atmosphere models,” Journal of Geophysical Research, vol. 110, no. 11, Article ID C11014, 2005.
[20]
J. C. Ohlmann and D. A. Siegel, “Ocean radiant heating. Part II: parameterizing solar radiation transmission through the upper ocean,” Journal of Physical Oceanography, vol. 30, no. 8, pp. 1849–1865, 2000.
[21]
M. A. Brunke, X. Zeng, V. Misra, and A. Beljaars, “Integration of a prognostic sea surface skin temperature scheme into weather and climate models,” Journal of Geophysical Research, vol. 113, no. 21, Article ID D21117, 2008.
[22]
H. H. Chia and C. F. Ropelewski, “The interannual variability in the genesis location of tropical cyclones in the northwest Pacific,” Journal of Climate, vol. 15, no. 20, pp. 2934–2944, 2002.
[23]
J. C. L. Chan, “Thermodynamic control on the climate of intense tropical cyclones,” Proceedings of the Royal Society A, vol. 465, no. 2110, pp. 3011–3021, 2009.