全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Influence of Algal Exudate on the Hygroscopicity of Sea Spray Particles

DOI: 10.1155/2010/365131

Full-Text   Cite this paper   Add to My Lib

Abstract:

We examined the effect of organic matter released by four different algal species on the hygroscopic growth and droplet activation behaviour of laboratory-generated marine aerosol particles. Hygroscopic growth factors and dry diameters for activation were reduced by less than 10%, compared to that of sodium chloride or of artificial seawater that was devoid of marine surfactants. Concentration-dependent nonideal behaviour was observed for the artificial seawater. But within measurement uncertainty, the measured hygroscopic growth and droplet activation behaviour for the samples that contained organic matter were consistent with a hygroscopicity parameter that was constant between the sub- and supersaturated measurement points. Also, the hygroscopic growth measured for hydrated particles after 3 and after 10 seconds was similar, which implies that in this time range no kinetic effects were detected. 1. Introduction Approximately 71% of the Earth's surface is covered by oceans, which provide a constant source of marine aerosol particles. Atmospheric marine aerosols consist of particulate matter with both, primary and secondary origin. Marine primary particles are produced on the ocean surface by bubble-bursting and tearing from breaking waves, that is, by processes depending on the wind speed. Secondary particulate matter originates from gas-to-particle conversion processes, such as nucleation and condensation [1], and, in the marine case, comprises substances as non-sea-salt sulphate and organic species. Regarding the Earth's radiation budget, marine particles affect both the aerosol direct and indirect effects. Pilinis et al. [2] stated that the single most important parameter in determining direct aerosol forcing is the relative humidity (RH), and the most important process is the increase of the aerosol mass as a result of water uptake. Compared to continental aerosol, marine aerosol particles generally are more hygroscopic (see e.g., [3], where the particle hygroscopicity parameter [4] of the more hygroscopic particle fraction was determined to be around 0.3 for continental and 0.45 for marine aerosol, and with a of 0.95 for an additional (small) sea-salt mode for the marine case). This makes marine aerosol particles particularly susceptible to changes in relative humidity. Likewise, they easily can be activated to cloud droplets at atmospheric relevant supersaturations. The largest sea-salt particles may behave as giant Cloud Condensation Nuclei (CCN), [5] and their role in the initiation of precipitation in warm shallow clouds is still under

References

[1]  C. D. O'Dowd and G. de Leeuw, “Marine aerosol production: a review of the current knowledge,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1856, pp. 1753–1774, 2007.
[2]  C. Pilinis, S. N. Pandis, and J. H. Seinfeld, “Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition,” Journal of Geophysical Research, vol. 100, no. 9, pp. 18–754, 1995.
[3]  H. Wex, G. McFiggans, S. Henning, and F. Stratmann, “Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations,” Geophysical Research Letters, vol. 37, no. 10, Article ID L10805, 2010.
[4]  M. D. Petters and S. M. Kreidenweis, “A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,” Atmospheric Chemistry and Physics, vol. 7, no. 8, pp. 1961–1971, 2007.
[5]  A. H. Woodcock, C. F. Kientzler, A. B. Arons, and D. C. Blanchard, “Giant condensation nuclei from bursting bubbles,” Nature, vol. 172, no. 4390, pp. 1144–1145, 1953.
[6]  G. Feingold, W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, “The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties,” Journal of the Atmospheric Sciences, vol. 56, no. 24, pp. 4100–4117, 1999.
[7]  A. M. Blyth, S. G. Lasher-Trapp, W. A. Cooper, C. A. Knight, and J. Latham, “The role of giant and ultragiant nuclei in the formation of early radar echoes in warm cumulus clouds,” Journal of the Atmospheric Sciences, vol. 60, no. 21, pp. 2557–2572, 2003.
[8]  H. E. Gerber, G. M. Frick, J. B. Jensen, and J. G. Hudson, “Entrainment, mixing, and microphysics in trade-wind-cumulus,” Journal of the Meteorological Society of Japan, vol. 86A, pp. 87–106, 2008.
[9]  C. Textor, M. Schulz, S. Guibert et al., “Analysis and quantification of the diversities of aerosol life cycles within AeroCom,” Atmospheric Chemistry and Physics, vol. 6, no. 7, pp. 1777–1813, 2006.
[10]  D. A. Randell, J. A. Coakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, “Outlook for research on subtropical marine stratiform clouds,” Bulletin of the American Meteorological Society, vol. 65, no. 12, pp. 1290–1301, 1984.
[11]  B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science, vol. 245, no. 4923, pp. 1227–1230, 1989.
[12]  L. I. Aluwihare and D. J. Repeta, “A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae,” Marine Ecology Progress Series, vol. 186, pp. 105–117, 1999.
[13]  N. Meskhidze and A. Nenes, “Phytoplankton and cloudiness in the southern ocean,” Science, vol. 314, no. 5804, pp. 1419–1423, 2006.
[14]  E. G. Stephanou, “Analysis of anthropogenic and biogenic lipids in the aerosol of a coastal area in East Mediterranean Sea,” Fresenius' Journal of Analytical Chemistry, vol. 339, no. 10, pp. 780–784, 1991.
[15]  C. A. Randles, L. M. Russell, and V. Ramaswamy, “Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing,” Geophysical Research Letters, vol. 31, no. 16, Article ID L16108, 2004.
[16]  F. Cavalli, M. C. Facchini, S. Decesari et al., “Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic,” Journal of Geophysical Research D, vol. 109, no. 24, Article ID D24215, 2004.
[17]  C. D. O'Dowd, M. C. Facchini, F. Cavalli et al., “Biogenically driven organic contribution to marine aerosol,” Nature, vol. 431, no. 7009, pp. 676–680, 2004.
[18]  M. Mochida, Y. Kitamori, K. Kawamura, Y. Nojiri, and K. Suzuki, “Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea-salt particles,” Journal of Geophysical Research D, vol. 107, no. 17, article 4325, 2002.
[19]  H. Tervahattu, K. Hartonen, V.-M. Kerminen et al., “New evidence of an organic layer on marine aerosols,” Journal of Geophysical Research D, vol. 107, no. 7, article 4053, 2002.
[20]  H. Tervahattu, J. Juhanoja, and K. Kupiainen, “Identification of an organic coating on marine aerosol particles by TOF-SIMS,” Journal of Geophysical Research D, vol. 107, no. 16, article 4319, 2002.
[21]  G. B. Ellison, A. F. Tuck, and V. Vaida, “Atmospheric processing of organic aerosols,” Journal of Geophysical Research D, vol. 104, no. 9, pp. 11633–11641, 1999.
[22]  M. C. Facchini, M. Mircea, S. Fuzzi, and R. J. Charlson, “Cloud albedo enhancement by surface-active organic solutes in growing droplets,” Nature, vol. 401, no. 6750, pp. 257–259, 1999.
[23]  R. H. Moore, E. D. Ingall, A. Sorooshian, and A. Nenes, “Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity,” Geophysical Research Letters, vol. 35, no. 7, Article ID L07801, 2008.
[24]  K. Sellegri, C. D. O'Dowd, Y. J. Yoon, S. G. Jennings, and G. de Leeuw, “Surfactants and submicron sea spray generation,” Journal of Geophysical Research D, vol. 111, no. 22, Article ID D22215, 2006.
[25]  H. Wex, F. Stratmann, D. Topping, and G. McFiggans, “The Kelvin versus the raoult term in the k?hler equation,” Journal of the Atmospheric Sciences, vol. 65, no. 12, pp. 4004–4016, 2008.
[26]  H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
[27]  D. Niedermeier, H. Wex, J. Voigtl?nder et al., “LACIS-measurements and parameterization of sea-salt particle hygroscopic growth and activation,” Atmospheric Chemistry and Physics, vol. 8, no. 3, pp. 579–590, 2008.
[28]  C. W. Brown and J. A. Yoder, “Coccolithophorid blooms in the global ocean,” Journal of Geophysical Research, vol. 99, no. 4, pp. 7467–7482, 1994.
[29]  V. Schoemann, S. Becquevort, J. Stefels, V. Rousseau, and C. Lancelot, “Phaeocystis blooms in the global ocean and their controlling mechanisms: a review,” Journal of Sea Research, vol. 53, no. 1-2, pp. 43–66, 2005.
[30]  E. Fuentes, H. Coe, D. Green, G. De Leeuw, and G. McFiggans, “Laboratory-generated primary marine aerosol via bubble-bursting and atomization,” Atmospheric Measurement Techniques, vol. 3, pp. 1–22, 2010.
[31]  H. Wex, T. Hennig, I. Salma et al., “Hygroscopic growth and measured and modeled critical super-saturations of an atmospheric HULIS sample,” Geophysical Research Letters, vol. 34, no. 2, Article ID L02818, 2007.
[32]  H. Wex, M. D. Petters, C. M. Carrico et al., “Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol—part 1: evidence from measurements,” Atmospheric Chemistry and Physics, vol. 9, no. 12, pp. 3987–3997, 2009.
[33]  D. Kester, I. Duedall, D. Conners, and R. Pytkowicz, “Preparation of artificial seawater,” Limnology and Oceanography, vol. 12, pp. 176–179, 1976.
[34]  R. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, pp. 26–60, Plenum Press, New York, NY, USA, 1975.
[35]  V. Ittekkot, “Variations of dissolved organic matter during a plankton bloom: qualitative aspects, based on sugar and amino acid analyses,” Marine Chemistry, vol. 11, no. 2, pp. 143–158, 1982.
[36]  M. W. Lomas, P. M. Glibert, D. A. Clougherty et al., “Elevated organic nutrient ratios associated with brown tide algal blooms of Aureococcus anophagefferens (Pelagophyceae),” Journal of Plankton Research, vol. 23, no. 12, pp. 1339–1344, 2001.
[37]  F. Fraga, “Phytoplanktonic biomass synthesis: application to deviations from Redfield stoichiometry,” Scientia Marina, vol. 65, no. 2, pp. 153–169, 2001.
[38]  H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, and F. Brechtel, “Measured and modeled equilibrium sizes of NaCl and particles at relative humidities up to 99.1%,” Journal of Geophysical Research D, vol. 110, no. 21, Article ID D21212, 2005.
[39]  A. Kiselev, H. Wex, F. Stratmann, A. Nadeev, and D. Karpushenko, “White-light optical particle spectrometer for in situ measurements of condensational growth of aerosol particles,” Applied Optics, vol. 44, no. 22, pp. 4693–4701, 2005.
[40]  G. C. Roberts and A. Nenes, “A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements,” Aerosol Science and Technology, vol. 39, no. 3, pp. 206–221, 2005.
[41]  E. Fuentes, H. Coe, D. Green, and G. McFiggans, “On the impacts of phytoplankton-derived organic matter on the properties of primary marine aerosol,” in preparation.
[42]  W. P. Kelly and P. H. McMurry, “Measurement of particle density by inertial classification of differential mobility analyzer-generated monodisperse aerosols,” Aerosol Science and Technology, vol. 17, no. 3, pp. 199–212, 1992.
[43]  D. Rose, S. S. Gunthe, E. Mikhailov et al., “Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment,” Atmospheric Chemistry and Physics, vol. 8, no. 5, pp. 1153–1179, 2008.
[44]  K. Sellegri, P. Villani, D. Picard, R. Dupuy, C. O'Dowd, and P. Laj, “Role of the volatile fraction of submicron marine aerosol on its hygroscopic properties,” Atmospheric Research, vol. 90, no. 2–4, pp. 272–277, 2008.
[45]  K. Kandler and L. Schütz, “Climatology of the average water-soluble volume fraction of atmospheric aerosol,” Atmospheric Research, vol. 83, no. 1, pp. 77–92, 2007.
[46]  E. Swietlicki, H.-C. Hansson, K. H?meri et al., “Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments: a review,” Tellus Series B, vol. 60, no. 3, pp. 432–469, 2008.
[47]  G. McFiggans, P. Artaxo, U. Baltensperger et al., “The effect of physical and chemical aerosol properties on warm cloud droplet activation,” Atmospheric Chemistry and Physics, vol. 6, no. 9, pp. 2593–2649, 2006.
[48]  P. K. Quinn, D. S. Covert, T. S. Bates, V. N. Kapustin, D. C. Ramsey-Bell, and L. M. McInnes, “Dimethylsulfide/cloud condensation nuclei/climate system: relevant size-resolved measurements of the chemical and physical properties of atmospheric aerosol particles,” Journal of Geophysical Research, vol. 98, no. 6, pp. 411–427, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133