全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diagnosis of the Relationship between Dust Storms over the Sahara Desert and Dust Deposit or Coloured Rain in the South Balkans

DOI: 10.1155/2010/760546

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main objects of study in this paper are the synoptic scale atmospheric circulation systems associated with the rather frequent phenomenon of coloured rain and the very rare phenomenon of dust or sand deposits from a Saharan sandstorm triggered by a developing strong depression. Analysis of two such cases revealed that two days before the occurrence of the coloured rain or the dust deposits over Greece a sand storm appeared over the north-western Sahara desert. The flow in the entire troposphere is southerly/south-westerly with an upward vertical motion regime. If the atmospheric conditions over Greece favour rain then this rain contains a part of the dust cloud while the rest is drawn away downstream adopting a light yellow colour. In cases where the atmospheric circulation on the route of the dust cloud trajectories is not intensively anticyclonic dust deposits can occur on the surface long far from the region of the dust origin. Such was the case on 4th April, 1988, when significant synoptic-scale subsidence occurred over Italy and towards Greece. The upper air data, in the form of synoptic maps, illustrate in detail the synoptic-scale atmospheric circulations associated with the emission-transport-deposition and confirm the transportation of dust particles. 1. Introduction The phenomenon of coloured rain over the South Balkans and, in particular, over Greece occurs rather frequently, being associated with the appearance of Sahara or Atlas Mountains depressions [1–3]. On the other hand a significant easily visible, dust deposit upon Greece, coming from North Africa, is a very rare phenomenon occurring only once within the last twenty years on 4 April 1988 in north Greece. Also on 17 April 2005 the city of Athens was enveloped in a thick dust cloud. The dust cloud was not a localised event over Athens, but it was part of a synoptic-scale dust transport from Africa [4]. This event over Athens seems to be a little bit different from the other one, on 4th April 1988 in Thessalonica, studied here, because the dust was concentrated in the boundary layer with very little dry deposit on surface reducing dramatically the visibility. Of course coloured rain and/or dust deposits occur also in other European countries which are further north than Greece, for example, United Kingdom [5, 6], Spain [7], and generally Europe [8]. Also the transport and deposition of African dust is known to affect distant regions in the North Atlantic as far away as the Caribbean Islands [9, 10]. Something similar occurs for the East Asian dust that is transported and deposited

References

[1]  V. E. Angouridakis, A Case of Coloured Rain in the Area of Thessaloniki, Meteorologika, no. 14, University of Thessaloniki, 1971.
[2]  S. Karoulias, The Saharian Depressions, Meteorologika, no. 57, University of Thessaloniki, 1971.
[3]  N. G. Prezerakos, “The northwest African depressions affecting the south Balkans,” Journal of Climatology, vol. 5, no. 6, pp. 643–654, 1985.
[4]  M. Athanassiadou, H. Flocas, M. A. J. Harrison, M. C. Hort, C. S. Witham, and S. Millington, “The dust event of 17 April 2005 over Athens, Greece,” Weather, vol. 61, no. 5, pp. 125–131, 2006.
[5]  M. T. Tullet, “A dust fall on 6 March 1977,” Weather, vol. 33, pp. 48–52, 1978.
[6]  R. F. File, “Dust deposit in England on 9 November 1984,” Weather, vol. 41, pp. 191–195, 1986.
[7]  S. Rodríguez, X. Querol, A. Alastuey, G. Kallos, and O. Kakaliagou, “Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain,” Atmospheric Environment, vol. 35, no. 14, pp. 2433–2447, 2001.
[8]  J.-B. Stuut, I. Smalley, and K. O'Hara-Dhand, “Aeolian dust in Europe: African sources and European deposits,” Quaternary International, vol. 198, no. 1-2, pp. 234–245, 2009.
[9]  J. M. Prospero, E. Bonatti, C. Schubert, and T. N. Carlson, “Dust in the Caribbean atmosphere traced to an African dust storm,” Earth and Planetary Science Letters, vol. 9, no. 3, pp. 287–293, 1970.
[10]  J. M. Prospero and T. N. Carlson, “Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean,” Journal of Geophysical Research, vol. 77, pp. 5255–5265, 1972.
[11]  G. E. Shaw, “Transport of Asian desert aerosol to the Hawaiian Islands,” Journal of Applied Meteorology, vol. 19, no. 11, pp. 1254–1259, 1980.
[12]  Y. Iwasaka, H. Minoura, and K. Nagaya, “The transport and spacial scale of Asian dust-storm clouds: a case study of the dust-storm event of April 1979,” Tellus, vol. 35B, no. 3, pp. 189–196, 1983.
[13]  M. Uematsu, R. A. Duce, J. M. Prospero, L. Chen, J. T. Merrill, and R. L. McDonald, “Transport of mineral aerosol from Asia over the North Pacific ocean,” Journal of Geophysical Research, vol. 88, no. C9, pp. 5342–5352, 1983.
[14]  E. F. Danielsen, “The relationship between severe weather, major dust storms and rapid large-scale cyclogenesis, Parts I and II,” in Subsynoptic Extratropical Weather Systems: Observations, Analysis, Modeling, and Prediction; Notes from a Colloquium: Summer 1974, vol. 2, National Center for Atmospheric Research, Boulder, Colo, USA, 1975.
[15]  D. G. Kaskaoutis, H. D. Kambezidis, P. T. Nastos, and P. G. Kosmopoulos, “Study on an intense dust storm over Greece,” Atmospheric Environment, vol. 42, no. 29, pp. 6884–6896, 2008.
[16]  R. Jones, “Atmospheric dispersion modelling at the Met. Office,” Weather, vol. 59, no. 11, pp. 311–316, 2004.
[17]  G. Kallos, A. Papadopoulos, P. Katsafados, and S. Nickovic, “Transatlantic Saharan dust transport: model simulation and results,” Journal of Geophysical Research, vol. 111, no. 9, Article ID D09204, 2006.
[18]  N. Kubilay, S. Nickovic, C. Moulin, and F. Dulac, “An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean,” Atmospheric Environment, vol. 34, no. 8, pp. 1293–1303, 2000.
[19]  B. Marticorena, G. Bergametti, B. Aumont, Y. Callot, C. N'Doumé, and M. Legrand, “Modeling the atmospheric dust cycle 2. Simulation of Saharan dust sources,” Journal of Geophysical Research, vol. 102, no. 4, pp. 4387–4404, 1997.
[20]  S. Michaelides, P. Evripidou, and G. Kallos, “Monitoring and predicting Saharan Désert dust events in the eastern Mediterranean,” Weather, vol. 54, pp. 311–316, 1999.
[21]  S. Ni?kovi? and S. Dobri?i?, “A model for long-range transport of desert dust,” Monthly Weather Review, vol. 124, no. 11, pp. 2537–2544, 1996.
[22]  S. Nickovic, O. Kakaliagou, G. Kallos, D. Jovic, and A. Papadopoulos, “Eta/dust model: sensitivity to model resolution and desert source specification,” in Proceedings of the 1st LAS/WMO International Symposium on Sand and Dust Storms, WMO Programme on Weather Prediction Research Report Series Project no. 10, WMO Technical Document no. 864, pp. 187–196, Damascus, Syria, November 1997.
[23]  S. Nickovic, G. Kallos, A. Papadopoulos, and O. Kakaliagou, “A model for prediction of desert dust cycle in the atmosphere,” Journal of Geophysical Research, vol. 106, no. 16, pp. 18113–18129, 2001.
[24]  L. Carapiperis and A. Tataris, “Coloured rain during the 15 and 22 March of 1962,” in Proceedings of the Academy of Athens, vol. 38, pp. 300–308, 1963.
[25]  T. A. Charadonis, T. J. Makrogiannis, and A. A. Flocas, “The possibility of identification of sand clouds and prediction of coloured rain over Greece by mean of satellite imagery,” Bulletin of the Geological Society of Greece, vol. 25, no. 4, pp. 303–314, 1991.
[26]  T Makrogiannis, A. Flocas, N. Ramos, and A. Karipidis, “A case of dust fall and coloured rain in the Greek area,” Rivista di Meteorologia Aeronautica, vol. 50, no. 1-2, pp. 65–74, 1990.
[27]  C. D. Thorncroft and H. A. Flocas, “A case study of Saharan cyclogenesis,” Monthly Weather Review, vol. 125, no. 6, pp. 1147–1165, 1997.
[28]  Karein D., The forecasting of cyclogenesis in the Mediterranean region, Ph.D. thesis, University of Edinburgh, Edinburgh, Scotland, 1975.
[29]  F. Defant, “On the hydrodynamic instability caused by approach of subtropical and polar front jet stream in northern latitudes before the onset of strong cyclogenesis,” in Rossby Memorial Volume: The Atmosphere and Sea in Motion, B. Bolin, Ed., pp. 305–325, Rockefeller Institute, New York, NY, USA, 1959.
[30]  N. G. Prezerakos, H. A. Flocas, and D. Brikas, “The role of the interaction between polar and subtropical jet in a case of depression rejuvenation over the Eastern Mediterranean,” Meteorology and Atmospheric Physics, vol. 92, no. 1-2, pp. 139–151, 2006.
[31]  N. G. Prezerakos, “Synoptic flow patterns leading to the generation of north-west African depressions,” International Journal of Climatology, vol. 10, no. 1, pp. 33–48, 1990.
[32]  N. G. Prezerakos, S. C. Michaelides, and A. S. Vlassi, “Atmospheric synoptic conditions associated with the initiation of north-west African depressions,” International Journal of Climatology, vol. 10, no. 7, pp. 711–729, 1990.
[33]  U. Dayan, J. Heffter, J. Miller, and G. Gutman, “Dust intrusion events into the Mediterranean basin,” Journal of Applied Meteorology, vol. 30, no. 8, pp. 1185–1199, 1991.
[34]  C. Moulin, C. E. Lambert, U. Dayan et al., “Satellite climatology of African dust transport in the Mediterranean atmosphere,” Journal of Geophysical Research, vol. 103, no. D11, pp. 13137–13144, 1998.
[35]  B. Marticorena and G. Bergammetti, “Modelling the atmosphere dust cycle: 1-Design of a soil-derived dust production scheme,” Journal of Geophysical Research Atmospheres, vol. 100, pp. 16415–16430, 1995.
[36]  D. Soderman and F. Dulac, “Monitoring and prediction of the atmospheric transport and deposition of desert dust in the Mediterranean region,” in Programme on Weather Prediction Research (PWPR), vol. 10 of Report Series Project, pp. 181–186, World Meteorological Organization, Geneva, Switzerland, 1998.
[37]  I. Tegen and I. Fung, “Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness,” Journal of Geophysical Research, vol. 99, no. D11, pp. 22897–22914, 1994.
[38]  S. A. Grigoryan and M. A. Sofiev, “Numerical modeling of dust elevation during storm episodes and its long-range atmospheric transport,” in Proceedings of the 1st LAS/WMO International Symposium on Sand and Dust Storms, WMO Programme on Weather Prediction Research Report Series Project no. 10, WMO Technical Document no. 864, pp. 88–98, Damascus, Syria, November 1997.
[39]  N G. Prezerakos, “Dust storms over Sahara Desert leading to dust deposit or coloured rain in the South Balkans,” in Proceedings of the 1st LAS/WMO International Symposium on Sand and Dust Storms, WMO Programme on Weather Prediction Research Report Series Project no. 10, WMO Technical Document no. 864, pp. 21–38, Damascus, Syria, November 1997.
[40]  C. Kottmeier and B. Fay, “Trajectories in the Antarctic lower troposphere,” Journal of Geophysical Research, vol. 103, no. D9, pp. 10947–10959, 1998.
[41]  World Meteorological Organization, World Weather Watch (WWW) Program, “Technical Progress Report on the Global Data-Processing System (GDPS),” Report Series 2, WMO, Geneva, Switzerland, 1995.
[42]  N. Brooks and M. Legrand, “Dust variability over northern Africa and rainfall in the Sahel,” in Linking Climate Change to Land Surface, S. J. McLaren and D. R. Kniveton, Eds., Springer, New York, NY, USA, 2000.
[43]  P. Ginoux, M. Chin, I. Tegen, et al., “Global simulation of dust in the troposphere: model description and assessment,” Journal of Geophysical Research Atmospheres, vol. 106, no. D17, pp. 20255–20273, 2001.
[44]  J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product,” Reviews of Geophysics, vol. 40, no. 1, p. 1002, 2002.
[45]  S. Petterssen, Weather Analysis and Forecasting, vol. 1, McGraw-Hill, New York, NY, USA, 2nd edition, 1956.
[46]  S. Petterssen and S. J. Smebye, “On the development of extratropical cyclones,” The Quarterly Journal of the Royal Meteorological Society, vol. 97, no. 414, pp. 457–482, 1956.
[47]  B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the use and significance of isentropic potential vorticity maps,” The Quarterly Journal of the Royal Meteorological Society, vol. 111, no. 470, pp. 877–946, 1985.
[48]  N. G. Prezerakos, H. A. Flocas, and S. C. Michaelides, “Absolute vorticity advection and potential vorticity of the free troposphere as synthetic tools for the diagnosis and forecasting of cyclogenesis,” Atmosphere-Ocean, vol. 35, no. 1, pp. 65–91, 1997.
[49]  S. A. Ackerman and T. Inoue, “Radiation energy budget studies using collocated AVHRR and ERBE observations,” Journal of Applied Meteorology, vol. 33, no. 3, pp. 370–378, 1994.
[50]  S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” Journal of Geophysical Research, vol. 102, no. D14, pp. 17069–17079, 1997.
[51]  L. Wald, “Some terms of reference in data fusion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 3, pp. 1190–1193, 1999.
[52]  J. P. Frangi, A. Druilhet, P. Durand, H. Ide, J. P. Pages, and A. Tinga, “Energy budget of the Sahelian surface layer,” Annales Geophysicae, vol. 10, no. 1-2, pp. 25–33, 1992.
[53]  E. Katragkou, S. Kazadzis, V. Amiridis, V. Papaioannou, S. Karathanasis, and D. Melas, “PM10 regional transport pathways in Thessaloniki, Greece,” Atmospheric Environment, vol. 43, no. 5, pp. 1079–1085, 2009.
[54]  A. Papayannis, D. Balis, V. Amiridis et al., “Measurements of Saharan dust aerosols over the eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2065–2079, 2005.
[55]  A. Poupkou, D. Melas, I. Ziomas et al., “Simulated summertime regional ground-level ozone concentrations over Greece,” Water, Air, & Soil Pollution, vol. 196, no. 1–4, pp. 169–181, 2009.
[56]  K. Markakis, A. Poupkou, D. Melas, and C. Zerefos, “A GIS based anthropogenic PM10 emission inventory for Greece,” Atmospheric Pollution Research, vol. 1, no. 2, pp. 71–81, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133