Terrestrial and marine photosynthetic organisms emit trace gases, including isoprene and monoterpenes. The resulting emissions can impact the atmosphere through oxidative chemistry and formation of secondary organic aerosol. Large uncertainty exists as to the magnitude of the marine sources of these compounds, their controlling factors, and contribution to marine aerosol. In recent years, the number of relevant studies has increased substantially, necessitating the review of this topic. Isoprene emissions vary with plankton species, chlorophyll concentration, light, and other factors. Remote marine boundary layer isoprene mixing ratios can reach >300 pptv, and extrapolated global ocean fluxes range from 1 to >10?Tg C year . Modeling studies using surface chlorophyll concentration as an isoprene emissions proxy suggest variable atmospheric impacts. More information is needed, including emission fluxes of isoprene and monoterpenes from various biogeographical areas, the effects of species and nutrient limitation on emissions, and the aerosol yields via condensation and nucleation, in order to better quantify the atmospheric impacts of marine isoprene and monoterpenes. 1. Introduction It is has been well established that photosynthetic organisms can emit trace gases, collectively known as biogenic volatile organic compounds (BVOCs), that play a role in the formation of ozone (O3) and help extend the lifetime of important atmospheric gases such as methane and carbon monoxide. Isoprene (C5H8) is the atmosphere’s most ubiquitous BVOC with annual global emissions estimated at 500–750?Tg of carbon [1]. While terrestrial vegetation has the highest isoprene emission rates, it has been shown that productive areas of remote ocean, coastal upwelling regions, and wetlands [2–4] can all emit isoprene at rates that can potentially influence the oxidation capacity of the atmosphere in remote marine and coastal regions [5–9]. In addition to its photochemical role, isoprene has been shown to be an important precursor to secondary organic aerosol (SOA) formation [10, 11]. Recent studies revealed that SOA can strongly impact the radiation balance of the atmosphere, modify cloud microphysics, and participate in chemical transformations. Marine SOA of biogenic origin could be especially important for understanding the cloud-mediated effects of aerosols on climate, because cloud properties respond to aerosols in a nonlinear way and are most sensitive to the addition of particles when the background concentration is low [12]. While the role of ocean ecology in shaping the
References
[1]
A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, “Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature),” Atmospheric Chemistry and Physics, vol. 6, no. 11, pp. 3181–3210, 2006.
[2]
B. Bonsang, C. Polle, and G. Lambert, “Evidence for marine production of isoprene,” Geophysical Research Letters, vol. 19, no. 11, pp. 1129–1132, 1992.
[3]
W. J. Broadgate, P. S. Liss, and S. A. Penkett, “Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean,” Geophysical Research Letters, vol. 24, no. 21, pp. 2675–2678, 1997.
[4]
A. Ekberg, A. Arneth, H. Hakola, S. Hayward, and T. Holst, “Isoprene emission from wetland sedges,” Biogeosciences, vol. 6, no. 4, pp. 601–613, 2009.
[5]
G. P. Ayers, R. W. Gillett, H. Granek, C. De Serves, and R. A. Cox, “Formaldehyde production in clean marine air,” Geophysical Research Letters, vol. 24, no. 4, pp. 401–404, 1997.
[6]
N. Carslaw, D. J. Creasey, D. E. Heard, et al., “Modeling OH, , and radicals in the marine boundary layer 1. Model construction and comparison with field measurements,” Journal of Geophysical Research Atmospheres, vol. 104, no. D23, pp. 30241–30255, 1999.
[7]
A. C. Lewis, K. D. Bartle, D. E. Heard, J. B. McQuaid, M. J. Pilling, and P. W. Seakins, “In situ, gas chromatographic measurements of non-methane hydrocarbons and dimethyl sulfide at a remote coastal location (Mace Head, Eire) July-August 1996,” Journal of the Chemical Society, Faraday Transactions, vol. 93, no. 16, pp. 2921–2927, 1997.
[8]
A. C. Lewis, L. J. Carpenter, and M. J. Pilling, “Nonmethane hydrocarbons in Southern Ocean boundary layer air,” Journal of Geophysical Research Atmospheres, vol. 106, no. D5, pp. 4987–4994, 2001.
[9]
E. Liakakou, M. Vrekoussis, B. Bonsang, Ch. Donousis, M. Kanakidou, and N. Mihalopoulos, “Isoprene above the Eastern Mediterranean: seasonal variation and contribution to the oxidation capacity of the atmosphere,” Atmospheric Environment, vol. 41, no. 5, pp. 1002–1010, 2007.
[10]
M. Claeys, B. Graham, G. Vas et al., “Formation of secondary organic aerosols through photooxidation of isoprene,” Science, vol. 303, no. 5661, pp. 1173–1176, 2004.
[11]
J. H. Kroll and J. H. Seinfeld, “Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere,” Atmospheric Environment, vol. 42, no. 16, pp. 3593–3624, 2008.
[12]
S. Platnick and S. Twomey, “Determining the susceptibility of cloud albedo to changes in droplet concentration with the advanced very high resolution radiometer,” Journal of Applied Meteorology, vol. 33, no. 5, pp. 334–347, 1994.
[13]
P. G. Falkowski, Y. Kim, Z. Kolber, C. Wilson, C. Wirick, and R. Cess, “Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic,” Science, vol. 256, no. 5061, pp. 1311–1313, 1992.
[14]
R. Boers, G. P. Ayers, and J. L. Gras, “Coherence between seasonal variation in satellite-derived cloud optical depth and boundary layer CCN concentrations at a mid- latitude Southern Hemisphere station,” Tellus, Series B, vol. 46, no. 2, pp. 123–131, 1994.
[15]
R. Boers, J. R. Acarreta, and J. L. Gras, “Satellite monitoring of the first indirect aerosol effect: retrieval of the droplet concentration of water clouds,” Journal of Geophysical Research Atmospheres, vol. 111, no. 22, Article ID D22208, 2006.
[16]
S. M. Vallina, R. Simó, and S. Gassó, “What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall,” Global Biogeochemical Cycles, vol. 20, no. 1, Article ID GB1014, 2006.
[17]
N. Meskhidze and A. Nenes, “Phytoplankton and cloudiness in the Southern Ocean,” Science, vol. 314, no. 5804, pp. 1419–1423, 2006.
[18]
Y. Hu, M. Vaughan, C. McClain et al., “Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements,” Atmospheric Chemistry and Physics, vol. 7, no. 12, pp. 3353–3359, 2007.
[19]
C. Hoose, J. E. Kristjánsson, T. Iversen, A. Kirkev?g, ?. Seland, and A. Gettelman, “Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect,” Geophysical Research Letters, vol. 36, no. 12, Article ID L12807, 2009.
[20]
W. J. Broadgate, G. Malin, F. C. Küpper, A. Thompson, and P. S. Liss, “Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere,” Marine Chemistry, vol. 88, no. 1-2, pp. 61–73, 2004.
[21]
S. L. Shaw, S. W. Chisholm, and R. G. Prinn, “Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton,” Marine Chemistry, vol. 80, no. 4, pp. 227–245, 2003.
[22]
B. Gantt, N. Meskhidze, and D. Kamykowski, “A new physically-based quantification of marine isoprene and primary organic aerosol emissions,” Atmospheric Chemistry and Physics, vol. 9, pp. 4915–4927, 2009.
[23]
O. W. Wingenter, K. B. Haase, P. Strutton et al., “Changing concentrations of CO, , , Br, I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8537–8541, 2004.
[24]
R. M. Moore and L. Wang, “The influence of iron fertilization on the fluxes of methyl halides and isoprene from ocean to atmosphere in the SERIES experiment,” Deep-Sea Research, vol. 53, no. 20–22, pp. 2398–2409, 2006.
[25]
P. J. Milne, D. D. Riemer, R. G. Zika, and L. E. Brand, “Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures,” Marine Chemistry, vol. 48, no. 3-4, pp. 237–244, 1995.
[26]
A. R. Baker, S. M. Turner, W. J. Broadgate et al., “Distribution and sea-air fluxes of biogenic trace gases in the eastern Atlantic Ocean,” Global Biogeochemical Cycles, vol. 14, no. 3, pp. 871–886, 2000.
[27]
S. Matsunaga, M. Mochida, T. Saito, and K. Kawamura, “In situ measurement of isoprene in the marine air and surface seawater from the western North Pacific,” Atmospheric Environment, vol. 36, no. 39-40, pp. 6051–6057, 2002.
[28]
L. Acuna-Alvarez, D. A. Exton, K. N. Timmis, D. J. Suggett, and T. J. McGenity, “Characterization of marine isoprene-degrading communities,” Environmental Microbiology, vol. 11, no. 12, pp. 3280–3291, 2009.
[29]
D. J. Erickson III and J. L. Hernandez, “A global, high resolution, satellite-based model of air-sea isoprene flux,” in Gas Transfer at Water Surfaces, vol. 127 of Geophysical Monograph, American Geophysical Union, 2002.
[30]
N. Meskhidze and A. Nenes, “Reply to comment on “Phytoplankton and cloudiness in the Southern Ocean”,” Science, vol. 317, no. 5834, pp. 42–43, 2007.
[31]
O. W. Wingenter, “Isoprene, cloud droplets, and phytoplankton,” Science, vol. 317, no. 5834, pp. 42–43, 2007.
[32]
M. Ratte, O. Bujok, A. Spitzy, and J. Rudolph, “Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments,” Journal of Geophysical Research Atmospheres, vol. 103, no. D5, pp. 5707–5717, 1998.
[33]
R. M. Moore, D. E. Oram, and S. A. Penkett, “Production of isoprene by marine phytoplankton cultures,” Geophysical Research Letters, vol. 21, no. 23, pp. 2507–2510, 1994.
[34]
A. Colomb, N. Yassaa, J. Williams, I. Peeken, and K. Lochte, “Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS),” Journal of Environmental Monitoring, vol. 10, no. 3, pp. 325–330, 2008.
[35]
N. Yassaa, I. Peeken, E. Z?llner et al., “Evidence for marine production of monoterpenes,” Environmental Chemistry, vol. 5, no. 6, pp. 391–401, 2008.
[36]
W. A. McKay, M. F. Turner, B. M. R. Jones, and C. M. Halliwell, “Emissions of hydrocarbons from marine phytoplankton—some results from controlled laboratory experiments,” Atmospheric Environment, vol. 30, no. 14, pp. 2583–2593, 1996.
[37]
S. R. Arnold, D. V. Spracklen, J. Williams, et al., “Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol,” Atmospheric Chemistry and Physics, vol. 9, pp. 1253–1262, 2009.
[38]
T. Evans and J. E. Mak, “Biological Volatile Organic Compounds (BVOCs) emissions from the planktonic diatom Thalassiosira pseudonana,” in Proceedings of the American Geophysical Union, Fall Meeting, 2009, abstract no. A11B-0089.
[39]
V. Sinha, J. Williams, M. Meyerh?fer, U. Riebesell, A. I. Paulino, and A. Larsen, “Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment,” Atmospheric Chemistry and Physics, vol. 7, no. 3, pp. 739–755, 2007.
[40]
B. Gantt, N. Meskhidze, Y. Zhang, and J. Xu, “The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States,” Atmospheric Environment, vol. 44, no. 1, pp. 115–121, 2010.
[41]
P. I. Palmer and S. L. Shaw, “Quantifying global marine isoprene fluxes using MODIS chlorophyll observations,” Geophysical Research Letters, vol. 32, no. 9, Article ID L09805, 5 pages, 2005.
[42]
G. Luo and F. Yu, “A numerical evaluation of global oceanic emissions of α-pinene and isoprene,” Atmospheric Chemistry and Physics, vol. 10, no. 4, pp. 2007–2015, 2010.
[43]
A. B. Guenther, R. K. Monson, and R. Fall, “Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development,” Journal of Geophysical Research Atmospheres, vol. 96, no. D6, pp. 10799–10808, 1991.
[44]
N. Gist and A. C. Lewis, “Seasonal variations of dissolved alkenes in coastal waters,” Marine Chemistry, vol. 100, no. 1-2, pp. 1–10, 2006.
[45]
S. Haapanala, J. Rinne, K.-H. Pystynen, H. Hellén, H. Hakola, and T. Riutta, “Measurements of hydrocarbon emissions from a boreal fen using the REA technique,” Biogeosciences, vol. 3, no. 1, pp. 103–112, 2006.
[46]
H. Hellén, H. Hakola, K.-H. Pystynen, J. Rinne, and S. Haapanala, “C2-C10 hydrocarbon emissions from a boreal wetland and forest floor,” Biogeosciences, vol. 3, no. 2, pp. 167–174, 2006.
[47]
P. Tiiva, R. Rinnan, T. Holopainen, S. K. M?rsky, and J. K. Holopainen, “Isoprene emissions from boreal peatland microcosms; effects of elevated ozone concentration in an open field experiment,” Atmospheric Environment, vol. 41, no. 18, pp. 3819–3828, 2007.
[48]
S. Fares, F. Brilli, I. Noguès et al., “Isoprene emission and primary metabolism in Phragmites australis grown under different phosphorus levels,” Plant Biology, vol. 10, no. 1, pp. 38–43, 2008.
[49]
H. K. Lichtenthaler, “The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 50, pp. 47–65, 1999.
[50]
A. C. Lewis, J. B. McQuaid, N. Carslaw, and M. J. Pilling, “Diurnal cycles of short-lived tropospheric alkenes at a north Atlantic coastal site,” Atmospheric Environment, vol. 33, no. 15, pp. 2417–2422, 1999.
[51]
J. P. Greenberg, A. B. Guenther, and A. Turnipseed, “Marine organic halide and isoprene emissions near Mace Head, Ireland,” Environmental Chemistry, vol. 2, no. 4, pp. 291–294, 2005.
[52]
I. E. Galbally, S. J. Lawson, I. A. Weeks et al., “Volatile organic compounds in marine air at Cape Grim, Australia,” Environmental Chemistry, vol. 4, no. 3, pp. 178–182, 2007.
[53]
Y. Yokouchi, H.-J. Li, T. Machida, S. Aoki, and H. Akimoto, “Isoprene in the marine boundary layer (Southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform,” Journal of Geophysical Research Atmospheres, vol. 104, no. D7, pp. 8067–8076, 1999.
[54]
A. Colomb, V. Gros, S. Alvain et al., “Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30–49?S),” Environmental Chemistry, vol. 6, no. 1, pp. 70–82, 2009.
[55]
B. Gantt, N. Meskhidze, and A. G. Carlton, “The impact of marine organics on the air quality of the western United States,” Atmospheric Chemistry and Physics Discussions, vol. 10, no. 3, pp. 6257–6278, 2010.
[56]
M. E. Hay and W. Fenical, “Marine plant-herbivore interactions: the ecology of chemical defense,” Annual Review of Ecology and Systematics, vol. 19, pp. 111–145, 1988.
[57]
M. L. Wise, “Monoterpene biosynthesis in marine algae,” Phycologia, vol. 42, no. 4, pp. 370–377, 2003.
[58]
J. H. Sartin, C. J. Halsall, B. Davison, S. Owen, and C. N. Hewitt, “Determination of biogenic volatile organic compounds (C8–C16) in the coastal atmosphere at Mace Head, Ireland,” Analytica Chimica Acta, vol. 428, no. 1, pp. 61–72, 2001.
[59]
C. Wiedinmyer, A. Guenther, P. Harley, et al., “Global organic emissions from vegetation,” in Emissions of Atmospheric Trace Compounds, C. Granier, P. Artaxo, and C. E. Reeves, Eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
[60]
D. K. Button, “Evidence for a terpene-based food chain in the Gulf of Alaska,” Applied and Environmental Microbiology, vol. 48, no. 5, pp. 1004–1011, 1984.
[61]
A. Guenther, C. N. Hewitt, D. Erickson, et al., “A global model of natural volatile organic compound emissions,” Journal of Geophysical Research Atmospheres, vol. 100, no. D5, pp. 8873–8892, 1995.
[62]
S. Alvain, C. Moulin, Y. Dandonneau, and F. M. Bréon, “Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery,” Deep-Sea Research Part I, vol. 52, no. 11, pp. 1989–2004, 2005.
[63]
D. Kamykowski, S.-J. Zentara, J. M. Morrison, and A. C. Switzer, “Dynamic global patterns of nitrate, phosphate, silicate, and iron availability and phytoplankton community composition from remote sensing data,” Global Biogeochemical Cycles, vol. 16, no. 4, Article ID 1077, 2002.
[64]
D. V. Spracklen, S. R. Arnold, J. Sciare, K. S. Carslaw, and C. Pio, “Globally significant oceanic source of organic carbon aerosol,” Geophysical Research Letters, vol. 35, no. 12, Article ID L12811, 2008.
[65]
G. J. Roelofs, “A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation,” Atmospheric Chemistry and Physics, vol. 8, no. 3, pp. 709–719, 2008.
[66]
J. R. Hopkins, I. D. Jones, A. C. Lewis, J. B. McQuaid, and P. W. Seakins, “Non-methane hydrocarbons in the Arctic boundary layer,” Atmospheric Environment, vol. 36, no. 20, pp. 3217–3229, 2002.
[67]
D. E. Heard, K. A. Read, J. Methven et al., “The North Atlantic Marine Boundary Layer Experiment (NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002,” Atmospheric Chemistry and Physics, vol. 6, no. 8, pp. 2241–2272, 2006.
[68]
B. Langmann, C. Scannell, and C. O'Dowd, “New directions: organic matter contribution to marine aerosols and cloud condensation nuclei,” Atmospheric Environment, vol. 42, no. 33, pp. 7821–7822, 2008.
[69]
P. Vaattovaara, P. E. Huttunen, Y. J. Yoon et al., “The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution,” Atmospheric Chemistry and Physics, vol. 6, no. 12, pp. 4601–4616, 2006.
[70]
R. L. Modini, Z. D. Ristovski, G. R. Johnson et al., “New particle formation and growth at a remote, sub-tropical coastal location,” Atmospheric Chemistry and Physics, vol. 9, no. 19, pp. 7607–7621, 2009.
[71]
M. Claeys, W. Wang, R. Vermeylen et al., “Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006-2007,” Journal of Aerosol Science, vol. 41, no. 1, pp. 13–22, 2010.