The Mulcahy (Mulcahy et al., 2008) power-law parameterization, derived at the coastal Atlantic station Mace Head, between clean marine aerosol optical depth (AOD) and wind speed is compared to open ocean MODIS-derived AOD versus wind speed. The reported AOD versus wind speed (U) was a function of ~U2. The open ocean MODIS-derived AOD at 550?nm and 860?nm wavelengths, while in good agreement with the general magnitude of the Mulcahy parameterization, follows a power-law with the exponent ranging from 0.72 to 2.47 for a wind speed range of 2–18?m . For the four cases examined, some MODIS cases underestimated AOD while other cases overestimated AOD relative to the Mulcahy scheme. Overall, the results from MODIS support the general power-law relationship of Mulcahy, although some linear cases were also encountered in the MODIS dataset. Deviations also arise between MODIS and Mulcahy at higher wind speeds (>15?m ), where MODIS-derived AOD returns lower values as compared to Mulcahy. The results also support the suggestion than wind generated sea spray, under moderately high winds, can rival anthropogenic pollution plumes advecting out into marine environments with wind driven AOD contributing to AOD values approaching 0.3. 1. Introduction Sea spray aerosol is one of the largest natural contributors to the global aerosol loading and thus plays an important role in the global radiative budget [1, 2]. Submicron size aerosols are especially relevant in terms of cloud condensation nuclei [3], while both sub- and supermicron sizes contribute to aerosol scattering [4] and to aerosol optical depth [5]. Both of these effects suggest that sea spray aerosol plays an important role in the global radiative budget, contributing to the aerosol climate effect [6, 7]. Mulcahy et al. [5] established that under moderate to high wind speed conditions, AOD associated with sea spray followed a power-law wind-speed dependency with an exponent of 2. At moderately high wind speeds, sea spray-derived AOD reached the order of 0.35, often exceeding AOD associated with pollution plumes over oceanic regions. The relationship of Mulcahy et al. [5] has recently been compared to model-predicted AOD from sea spray sources by Madry et al. [8]. In the latter study, they found that model-derived AOD also followed a wind speed square function, and that the formulation proposed by Mulcahy et al. [5] was highly correlated to the modeled-derived AOD values. Mulchay et al. [5] report AOD values for clean marine air which are significantly higher than those previously reported (e.g., Smirnov et al.
References
[1]
S. Solomon, D. Qin, M. Manning, et al., Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2007.
[2]
C. D. O'Dowd and G. De Leeuw, “Marine aerosol production: a review of the current knowledge,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1856, pp. 1753–1774, 2007.
[3]
C. D. O'Dowd, J. A. Lowe, M. H. Smith, and A. D. Kaye, “The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: an improved multi-component aerosol-cloud droplet parametrization,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 556, pp. 1295–1313, 1999.
[4]
C. Kleefeld, C. D. O'Dowd, and C. D. O'Dowd, “Relative contribution of submicron and supermicron particles to aerosol light scattering in the marine boundary layer,” Journal of Geophysical Research D, vol. 107, no. 19, article 8103, 2002.
[5]
J. P. Mulcahy, C. D. O'Dowd, S. G. Jennings, and D. Ceburnis, “Significant enhancement of aerosol optical depth in marine air under high wind conditions,” Geophysical Research Letters, vol. 35, no. 16, Article ID L16810, 2008.
[6]
C. D. O'Dowd, M. C. Facchini, and M. C. Facchini, “Biogenically driven organic contribution to marine aerosol,” Nature, vol. 431, no. 7009, pp. 676–680, 2004.
[7]
T. S. Bates, T. L. Anderson, and T. L. Anderson, “Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling,” Atmospheric Chemistry and Physics, vol. 6, no. 6, pp. 1657–1732, 2006.
[8]
W. L. Madry, O. B. Toon, and C. D. O'Dowd, “Modeled optical thickness of the sea salt aerosol over the world ocean,” submitted to Journal of Geophysical Research.
[9]
A. Smirnov, B. N. Holben, and B. N. Holben, “Optical properties of atmospheric aerosol in maritime environments,” Journal of the Atmospheric Sciences, vol. 59, no. 3, pp. 501–523, 2002.
[10]
R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition,” Australian Meteorological Magazine, vol. 47, no. 4, pp. 295–308, 1998.
[11]
J. V. Martins, D. Tanré, L. Remer, Y. Kaufman, S. Mattoo, and R. Levy, “MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability,” Geophysical Research Letters, vol. 29, no. 12, Article ID 8009, 4 pages, 2002.
[12]
L. A. Remer, Y. J. Kaufman, and Y. J. Kaufman, “The MODIS aerosol algorithm, products, and validation,” Journal of the Atmospheric Sciences, vol. 62, no. 4, pp. 947–973, 2005.
[13]
A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, “Cloud-screening and quality control algorithms for the AERONET database,” Remote Sensing of Environment, vol. 73, no. 3, pp. 337–349, 2000.
[14]
D. Tanré, Y. J. Kaufman, M. Herman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16971–16988, 1997.
[15]
B. Guenther, X. Xiong, V. V. Salomonson, W. L. Barnes, and J. Young, “On-orbit performance of the Earth observing system moderate resolution imaging spectroradiometer; first year of data,” Remote Sensing of Environment, vol. 83, no. 1-2, pp. 16–30, 2002.
[16]
W. T. Liu, “Progress in scatterometer application,” Journal of Oceanography, vol. 58, no. 1, pp. 121–136, 2002.
[17]
L. A. Remer, D. Tanre, and Y. J. Kaufman, “Algorithm theoretical basis document (ATBD): algorithm for remote sensing of tropospheric aerosol from MODIS,” Collection 5, Product ID: MOD04/MYD04, 2006.
[18]
H. Huang, G. E. Thomas, and R. G. Grainger, “Relationship between wind speed and aerosol optical depth over remote ocean,” Atmospheric Chemistry and Physics, vol. 10, no. 13, pp. 5943–5950, 2010.
[19]
Y. Lehahn, I. Koren, E. Boss, Y. Ben-Ami, and O. Altaratz, “Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data,” Atmospheric Chemistry and Physics, vol. 10, no. 14, pp. 6711–6720, 2010.