全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pancreatic Cancer Cell Glycosylation Regulates Cell Adhesion and Invasion through the Modulation of α2β1 Integrin and E-Cadherin Function

DOI: 10.1371/journal.pone.0098595

Full-Text   Cite this paper   Add to My Lib

Abstract:

In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion.

References

[1]  Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5: 526–542. doi: 10.1038/nrc1649
[2]  Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147: 992–1009. doi: 10.1016/j.cell.2011.11.016
[3]  Hirohashi S, Kanai Y (2003) Cell adhesion system and human cancer morphogenesis. Cancer Sci 94: 575–581. doi: 10.1111/j.1349-7006.2003.tb01485.x
[4]  van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65: 3756–3788. doi: 10.1007/s00018-008-8281-1
[5]  Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20: 3199–3214. doi: 10.1101/gad.1486806
[6]  Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193. doi: 10.1038/32433
[7]  Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142. doi: 10.1038/nrm1835
[8]  Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687. doi: 10.1016/s0092-8674(02)00971-6
[9]  Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, et al. (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6: 154–161. doi: 10.1038/ncb1094
[10]  Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10–29. doi: 10.3322/caac.20138
[11]  Keleg S, Buchler P, Ludwig R, Buchler MW, Friess H (2003) Invasion and metastasis in pancreatic cancer. Mol Cancer 2: 14. doi: 10.1186/1476-4598-2-14
[12]  Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, et al. (2007) Pancreatic cancer microenvironment. Int J Cancer 121: 699–705. doi: 10.1002/ijc.22871
[13]  Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, et al. (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63: 8614–8622.
[14]  Grzesiak JJ, Ho JC, Moossa AR, Bouvet M (2007) The integrin-extracellular matrix axis in pancreatic cancer. Pancreas 35: 293–301. doi: 10.1097/mpa.0b013e31811f4526
[15]  Grzesiak JJ, Bouvet M (2006) The alpha2beta1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines. Br J Cancer 94: 1311–1319. doi: 10.1016/j.jss.2005.11.283
[16]  Lee CY, Marzan D, Lin G, Goodison S, Silletti S (2011) alpha2 Integrin-Dependent Suppression of Pancreatic Adenocarcinoma Cell Invasion Involves Ectodomain Regulation of Kallikrein-Related Peptidase-5. J Oncol 2011: 365651. doi: 10.1155/2011/365651
[17]  Nagathihalli NS, Merchant NB (2012) Src-mediated regulation of E-cadherin and EMT in pancreatic cancer. Front Biosci (Landmark Ed) 17: 2059–2069. doi: 10.2741/4037
[18]  Pinho SS, Seruca R, Gartner F, Yamaguchi Y, Gu J, et al. (2011) Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 68: 1011–1020. doi: 10.1007/s00018-010-0595-0
[19]  Mousa SA (2008) Cell adhesion molecules: potential therapeutic & diagnostic implications. Mol Biotechnol 38: 33–40. doi: 10.1007/s12033-007-0072-7
[20]  Varki A, Kannagi R, Toole BP (2009) Glycosilation changes in cancer. In: Varki A CR, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editor. Essentials of Glycobiology. New York: Cold Spring Harbor Laboratory Press. pp. 617–632.
[21]  Park HU, Kim JW, Kim GE, Bae HI, Crawley SC, et al. (2003) Aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl Le(x) antigen in pancreatic intraepithelial neoplasia. Pancreas 26: e48–54. doi: 10.1097/00006676-200304000-00022
[22]  Peracaula R, Tabares G, Lopez-Ferrer A, Brossmer R, de Bolos C, et al. (2005) Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells. Glycoconj J 22: 135–144. doi: 10.1007/s10719-005-0734-2
[23]  Perez-Garay M, Arteta B, Pages L, de Llorens R, de Bolos C, et al. (2010) alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 5: e12524. doi: 10.1371/journal.pone.0012524
[24]  Perez-Garay M, Arteta B, Llop E, Cobler L, Pages L, et al. (2013) alpha2,3-sialyltransferase ST3Gal IV promotes migration and metastasis in pancreatic adenocarcinoma cells and tends to be highly expressed in pancreatic adenocarcinoma tissues. Int J Biochem Cell Biol0 45: 1748–1757. doi: 10.1016/j.biocel.2013.05.015
[25]  Pinho SS, Figueiredo J, Cabral J, Carvalho S, Dourado J, et al. (2013) E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim Biophys Acta 1830: 2690–2700. doi: 10.1016/j.bbagen.2012.10.021
[26]  Zhao H, Liang Y, Xu Z, Wang L, Zhou F, et al. (2008) N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem 104: 162–175. doi: 10.1002/jcb.21608
[27]  Liwosz A, Lei T, Kukuruzinska MA (2006) N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J Biol Chem 281: 23138–23149. doi: 10.1074/jbc.m512621200
[28]  Gu J, Taniguchi N (2004) Regulation of integrin functions by N-glycans. Glycoconj J 21: 9–15. doi: 10.1023/b:glyc.0000043741.47559.30
[29]  Janik ME, Litynska A, Vereecken P (2010) Cell migration-the role of integrin glycosylation. Biochim Biophys Acta 1800: 545–555. doi: 10.1016/j.bbagen.2010.03.013
[30]  Bassaga?as S, Pérez-Garay M, Peracaula R (2014) Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas 43: 109–117. doi: 10.1097/mpa.0b013e31829d9090
[31]  Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, et al. (2006) Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem 281: 34888–34896. doi: 10.1074/jbc.m607067200
[32]  Boterberg T, Bracke ME, Bruyneel EA, Mareel MM (2004) Cell Aggregation Assays. In: Brooks S, Schumacher U, editors. Methods in Molecular Medicine, vol 58 : Metastasis Research Protocols, Vol 2: Cell Behavior In Vitro and In Vivo. Totowa, NJ: Humana Press Inc. pp. 33–45.
[33]  Pinho SS, Osorio H, Nita-Lazar M, Gomes J, Lopes C, et al. (2009) Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem Biophys Res Commun 379: 1091–1096. doi: 10.1016/j.bbrc.2009.01.024
[34]  Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M (2002) Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration. Cancer Res 62: 6837–6845.
[35]  Zhao Y, Itoh S, Wang X, Isaji T, Miyoshi E, et al. (2006) Deletion of core fucosylation on alpha3beta1 integrin down-regulates its functions. J Biol Chem 281: 38343–38350. doi: 10.1074/jbc.m608764200
[36]  Sobin LH, Gospodarowicz MK, Wittekind C, International Union against Cancer( 2010) TNM classification of malignant tumours. Chichester, West Sussex, UK; Hoboken, NJ: Wiley-Blackwell. xx, 309 p. p.
[37]  Camper L, Hellman U, Lundgren-Akerlund E (1998) Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem 273: 20383–20389. doi: 10.1074/jbc.273.32.20383
[38]  Tiger CF, Fougerousse F, Grundstrom G, Velling T, Gullberg D (2001) alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 237: 116–129. doi: 10.1006/dbio.2001.0363
[39]  Chen R, Jiang X, Sun D, Han G, Wang F, et al. (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8: 651–661. doi: 10.1021/pr8008012
[40]  Wollscheid B, Bausch-Fluck D, Henderson C, O'Brien R, Bibel M, et al. (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27: 378–386. doi: 10.1038/nbt.1532
[41]  Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, et al. (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4: 2070–2080. doi: 10.1021/pr0502065
[42]  Schober M, Raghavan S, Nikolova M, Polak L, Pasolli HA, et al. (2007) Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. J Cell Biol 176: 667–680. doi: 10.1083/jcb.200608010
[43]  Benton G, Kleinman HK, George J, Arnaoutova I (2011) Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int J Cancer 128: 1751–1757. doi: 10.1002/ijc.25781
[44]  Hall D, Brooks S (2004) In Vitro Invasion Assay Using Matrigel. In: Brooks S, Schumacher U, editors. Methods in Molecular Medicine, vol 58 : Metastasis Research Protocols, Vol 2: Cell Behavior In Vitro and In Vivo. Totowa, NJ: Humana Press Inc. pp. 61–70.
[45]  Geisler C, Jarvis DL (2011) Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 21: 988–993. doi: 10.1093/glycob/cwr080
[46]  Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127: 679–695. doi: 10.1016/j.cell.2006.11.001
[47]  Cavallaro U, Christofori G (2004) Multitasking in tumor progression: signaling functions of cell adhesion molecules. Ann N Y Acad Sci 1014: 58–66. doi: 10.1196/annals.1294.006
[48]  Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806. doi: 10.1126/science.1164368
[49]  Pinho S, Marcos NT, Ferreira B, Carvalho AS, Oliveira MJ, et al. (2007) Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett 249: 157–170. doi: 10.1016/j.canlet.2006.08.010
[50]  Gomes C, Osorio H, Pinto MT, Campos D, Oliveira MJ, et al. (2013) Expression of ST3GAL4 Leads to SLe(x) Expression and Induces c-Met Activation and an Invasive Phenotype in Gastric Carcinoma Cells. PLoS One 8: e66737. doi: 10.1371/journal.pone.0066737
[51]  Cui H, Lin Y, Yue L, Zhao X, Liu J (2011) Differential expression of the alpha2,3-sialic acid residues in breast cancer is associated with metastatic potential. Oncol Rep 25: 1365–1371. doi: 10.3892/or.2011.1192
[52]  Wang FL, Cui SX, Sun LP, Qu XJ, Xie YY, et al. (2009) High expression of alpha 2, 3-linked sialic acid residues is associated with the metastatic potential of human gastric cancer. Cancer Detect Prev 32: 437–443. doi: 10.1016/j.cdp.2009.01.001
[53]  Chen JY, Tang YA, Huang SM, Juan HF, Wu LW, et al. (2011) A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res 71: 473–483. doi: 10.1158/0008-5472.can-10-1303
[54]  Ghaneh P, Costello E, Neoptolemos JP (2007) Biology and management of pancreatic cancer. Gut 56: 1134–1152.
[55]  Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, et al. (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10: 7427–7437. doi: 10.1158/1078-0432.ccr-03-0825
[56]  Ohlund D, Franklin O, Lundberg E, Lundin C, Sund M (2013) Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer 13: 154. doi: 10.1186/1471-2407-13-154
[57]  Pinho SS, Carvalho S, Marcos-Pinto R, Magalhaes A, Oliveira C, et al. (2013) Gastric cancer: adding glycosylation to the equation. Trends Mol Med 19: 664–676. doi: 10.1016/j.molmed.2013.07.003
[58]  Bellis SL (2004) Variant glycosylation: an underappreciated regulatory mechanism for beta1 integrins. Biochim Biophys Acta 1663: 52–60. doi: 10.1016/s0005-2736(04)00095-1
[59]  Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, et al. (2008) Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 275: 1939–1948. doi: 10.1111/j.1742-4658.2008.06346.x
[60]  Isaji T, Sato Y, Zhao Y, Miyoshi E, Wada Y, et al. (2006) N-glycosylation of the beta-propeller domain of the integrin alpha5 subunit is essential for alpha5beta1 heterodimerization, expression on the cell surface, and its biological function. J Biol Chem 281: 33258–33267. doi: 10.1074/jbc.m607771200
[61]  Kariya Y, Gu J (2011) N-glycosylation of ss4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6: e27084. doi: 10.1371/journal.pone.0027084
[62]  Isaji T, Sato Y, Fukuda T, Gu J (2009) N-glycosylation of the I-like domain of beta1 integrin is essential for beta1 integrin expression and biological function: identification of the minimal N-glycosylation requirement for alpha5beta1. J Biol Chem 284: 12207–12216. doi: 10.1074/jbc.m807920200
[63]  Nadanaka S, Sato C, Kitajima K, Katagiri K, Irie S, et al. (2001) Occurrence of oligosialic acids on integrin alpha 5 subunit and their involvement in cell adhesion to fibronectin. J Biol Chem 276: 33657–33664. doi: 10.1074/jbc.m011100200
[64]  Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, et al. (2005) Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65: 4645–4652. doi: 10.1158/0008-5472.can-04-3117
[65]  Christie DR, Shaikh FM, Lucas JAT, Lucas JA 3rd, Bellis SL (2008) ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res 1: 3. doi: 10.1186/1757-2215-1-3
[66]  Hedlund M, Ng E, Varki A, Varki NM (2008) alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 68: 388–394. doi: 10.1158/0008-5472.can-07-1340
[67]  Kishimoto T, Ishikura H, Kimura C, Takahashi T, Kato H, et al. (1996) Phenotypes correlating to metastatic properties of pancreas adenocarcinoma in vivo: the importance of surface sialyl Lewis(a) antigen. Int J Cancer 69: 290–294. doi: 10.1002/(sici)1097-0215(19960822)69:4<290::aid-ijc9>3.0.co;2-s
[68]  Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, et al. (2004) Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem 279: 19747–19754. doi: 10.1074/jbc.m311627200
[69]  Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18: 516–523. doi: 10.1016/j.ceb.2006.08.011
[70]  McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, et al. (2005) The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 5: 505–515. doi: 10.1038/nrc1647
[71]  Shaikh FM, Seales EC, Clem WC, Hennessy KM, Zhuo Y, et al. (2008) Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms. Exp Cell Res 314: 2941–2950. doi: 10.1016/j.yexcr.2008.07.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133