全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Characterization of the RnfB and RnfG Subunits of the Rnf Complex from the Archaeon Methanosarcina acetivorans

DOI: 10.1371/journal.pone.0097966

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rnf complexes are redox-driven ion pumps identified in diverse species from the domains Bacteria and Archaea, biochemical characterizations of which are reported for two species from the domain Bacteria. Here, we present characterizations of the redox-active subunits RnfG and RnfB from the Rnf complex of Methanosarcina acetivorans, an acetate-utilizing methane-producing species from the domain Archaea. The purified RnfG subunit produced in Escherichia coli fluoresced in SDS-PAGE gels under UV illumination and showed a UV-visible spectrum typical of flavoproteins. The Thr166Gly variant of RnfG was colorless and failed to fluoresce under UV illumination confirming a role for Thr166 in binding FMN. Redox titration of holo-RnfG revealed a midpoint potential of ?129 mV for FMN with n = 2. The overproduced RnfG was primarily localized to the membrane of E. coli and the sequence contained a transmembrane helix. A topological analysis combining reporter protein fusion and computer predictions indicated that the C-terminal domain containing FMN is located on the outer aspect of the cytoplasmic membrane. The purified RnfB subunit produced in E. coli showed a UV-visible spectrum typical of iron-sulfur proteins. The EPR spectra of reduced RnfB featured a broad spectral shape with g values (2.06, 1.94, 1.90, 1.88) characteristic of magnetically coupled 3Fe-4S and 4Fe-4S clusters in close agreement with the iron and acid-labile sulfur content. The ferredoxin specific to the aceticlastic pathway served as an electron donor to RnfB suggesting this subunit is the entry point of electrons to the Rnf complex. The results advance an understanding of the organization and biochemical properties of the Rnf complex and lay a foundation for further understanding the overall mechanism in the pathway of methane formation from acetate.

References

[1]  Ferry JG (2010) How to make a living exhaling methane. Annu Rev Microbiol 64: 453–473. doi: 10.1146/annurev.micro.112408.134051
[2]  Welte C, Deppenmeier U (2013) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta: in press.
[3]  Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191: 2826–2833. doi: 10.1128/jb.00563-08
[4]  Meuer J, Bartoschek S, Koch J, Kunkel A, Hedderich R (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 265: 325–335. doi: 10.1046/j.1432-1327.1999.00738.x
[5]  Welte C, Kratzer C, Deppenmeier U (2010) Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J 277: 3396–3403. doi: 10.1111/j.1742-4658.2010.07744.x
[6]  Welte C, Kallnik V, Grapp M, Bender G, Ragsdale S, et al. (2010) Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei. J Bacteriol 192: 674–678. doi: 10.1128/jb.01307-09
[7]  Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A 99: 5632–5637. doi: 10.1073/pnas.072615499
[8]  Welte C, Deppenmeier U (2011) Proton translocation in methanogens. Methods Enzymol 494: 257–280. doi: 10.1016/b978-0-12-385112-3.00013-5
[9]  Wang M, Tomb JF, Ferry JG (2011) Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol 11: 165. doi: 10.1186/1471-2180-11-165
[10]  Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, et al. (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12: 532–542. doi: 10.1101/gr.223902
[11]  Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, et al. (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188: 702–710. doi: 10.1128/jb.188.2.702-710.2006
[12]  Li L, Li Q, Rohlin L, Kim U, Salmon K, et al. (2007) Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 6: 759–771. doi: 10.1021/pr060383l
[13]  Buan NR, Metcalf WW (2010) Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Mol Microbiol 75: 843–853. doi: 10.1111/j.1365-2958.2009.06990.x
[14]  Schlegel K, Welte C, Deppenmeier U, Muller V (2012) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J 279: 4444–4452. doi: 10.1111/febs.12031
[15]  Schlegel K, Leone V, Faraldo-Gomez JD, Muller V (2012) Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci USA 109: 947–952. doi: 10.1073/pnas.1115796109
[16]  Schlegel K, Muller V (2013) Evolution of Na+ and H+ bioenergetics in methanogenic archaea. Biochem Soc Trans 41: 421–426. doi: 10.1042/bst20120294
[17]  Jasso-Chavez R, Apolinario EE, Sowers KR, Ferry JG (2013) MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J Bacteriol 195: 3987–3994. doi: 10.1128/jb.00581-13
[18]  Biegel E, Schmidt S, Müller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11: 1438–1443. doi: 10.1111/j.1462-2920.2009.01871.x
[19]  Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, et al. (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 105: 2128–2133. doi: 10.1073/pnas.0711093105
[20]  McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, et al. (2007) The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104: 7600–7605. doi: 10.1073/pnas.0610456104
[21]  Kim J, Hetzel M, Boiangiu CD, Buckel W (2004) Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiol Rev 28: 455–468. doi: 10.1016/j.femsre.2004.03.001
[22]  Curatti L, Brown CS, Ludden PW, Rubio LM (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci U S A 102: 6291–6296. doi: 10.1073/pnas.0501216102
[23]  Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, et al. (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22: 2614–2622. doi: 10.1093/emboj/cdg252
[24]  Backiel J, Juarez O, Zagorevski DV, Wang Z, Nilges MJ, et al. (2008) Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 47: 11273–11284. doi: 10.1021/bi800920j
[25]  Muller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2008) Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125: 137–146. doi: 10.1196/annals.1419.011
[26]  Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, et al. (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188: 702–710. doi: 10.1128/jb.188.2.702-710.2006
[27]  Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, et al. (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323–329.
[28]  Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107: 18138–18142. doi: 10.1073/pnas.1010318107
[29]  Biegel E, Schmidt S, Gonzalez JM, Muller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68: 613–634. doi: 10.1007/s00018-010-0555-8
[30]  Worm P, Stams AJ, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157: 280–289. doi: 10.1099/mic.0.043927-0
[31]  Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, et al. (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2: 69. doi: 10.3389/fmicb.2011.00069
[32]  Saaf A, Johansson M, Wallin E, von Heijne G (1999) Divergent evolution of membrane protein topology: the Escherichia coli RnfA and RnfE homologues. Proc Natl Acad Sci U S A 96: 8540–8544. doi: 10.1073/pnas.96.15.8540
[33]  Hess V, Schuchmann K, Muller V (2013) The Ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288: 31496–31502. doi: 10.1074/jbc.m113.510255
[34]  Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR (2012) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. MBio 4..
[35]  Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36: 5509–5521. doi: 10.1021/bi970014q
[36]  Whitby LG (1953) A new method for preparing flavin-adenine dinucleotide. Biochem J 54: 437–442.
[37]  Juarez O, Barquera B (2012) Insights into the mechanism of electron transfer and sodium translocation of the Na+-pumping NADH:quinone oxidoreductase. Biochim Biophys Acta 1817: 1823–1832. doi: 10.1016/j.bbabio.2012.03.017
[38]  Nakayama Y, Yasui M, Sugahara K, Hayashi M, Unemoto T (2000) Covalently bound flavin in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 474: 165–168. doi: 10.1016/s0014-5793(00)01595-7
[39]  Jouanneau Y, Jeong HS, Hugo N, Meyer C, Willison JC (1998) Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus. Characterization of two membrane-bound iron-sulfur proteins. Eur J Biochem 251: 54–64. doi: 10.1046/j.1432-1327.1998.2510054.x
[40]  Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106: 1760–1765. doi: 10.1073/pnas.0813167106
[41]  Suharti, Strampraad MJ, Schroder I, de Vries S (2001) A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry 40: 2632–2639. doi: 10.1021/bi0020067
[42]  Clements AP, Kilpatrick L, Lu WP, Ragsdale SW, Ferry JG (1994) Characterization of the iron-sulfur clusters in ferredoxin from acetate-grown Methanosarcina thermophila. J Bacteriol 176: 2689–2693.
[43]  Schmidt S, Biegel E, Muller V (2009) The ins and outs of Na+ bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787: 691–696. doi: 10.1016/j.bbabio.2008.12.015
[44]  Meyer B, Kuehl JV, Price MN, Ray J, Deutschbauer AM, et al.. (2014) The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-Flox and Rnf. Environ Microbiol: in press.
[45]  Verkhovsky MI, Bogachev AV (2010) Sodium-translocating NADH:Quinone oxidoreductase as a redox-driven ion pump. Biochim Biophys Acta 1797: 738–746. doi: 10.1016/j.bbabio.2009.12.020
[46]  Armstrong FA, George SJ, Thomson AJ, Yates MG (1988) Direct electrochemistry in the characterisation of redox proteins: novel properties of Azotobacter 7Fe ferredoxin. FEBS Lett 234: 107–110. doi: 10.1016/0014-5793(88)81313-9
[47]  Maupin-Furlow J, Ferry JG (1996) Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol 178: 340–346.
[48]  Ragsdale SW, Lindahl PA, Munck E (1987) Mossbauer, EPR, and optical studies of the corrinoid;iron-sulfur protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum. J Biol Chem 262: 14289–14297.
[49]  Lu WP, Schiau I, Cunningham JR, Ragsdale SW (1993) Sequence and expression of the gene encoding the corrinoid; iron-sulfur protein from clostridium-thermoaceticum and reconstitution of the recombinant protein to full activity. J Biol Chem 268: 5605–5614.
[50]  Masepohl B, Klipp W (1996) Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus. Arch Microbiol 165: 80–90. doi: 10.1007/s002030050301
[51]  Saeki K, Kumagai H (1998) The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark. Arch Microbiol 169: 464–467. doi: 10.1007/s002030050598
[52]  Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, et al. (2003) Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea. ChemBioChem 4: 333–335. doi: 10.1002/cbic.200390053
[53]  Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, et al. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554–559. doi: 10.1038/nbt959
[54]  Suharti S, Murakami KS, de Vries S, Ferry JG (2008) Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans. Biochemistry 47: 11528–11535. doi: 10.1021/bi801012p
[55]  Melen K, Krogh A, von Heijne G (2003) Reliability measures for membrane protein topology prediction algorithms. J Mol Biol 327: 735–744. doi: 10.1016/s0022-2836(03)00182-7
[56]  McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16: 404–405. doi: 10.1093/bioinformatics/16.4.404
[57]  Lu C, Bentley WE, Rao G (2004) A high-throughput approach to promoter study using green fluorescent protein. Biotechnol Bioeng Prog 20: 1634–1640.
[58]  Melchers K, Schuhmacher A, Buhmann A, Weitzenegger T, Belin D, et al. (1999) Membrane topology of CadA homologous P-type ATPase of Helicobacter pylori as determined by expression of phoA fusions in Escherichia coli and the positive inside rule. Res Microbiol 150: 507–520. doi: 10.1016/s0923-2508(99)00106-0
[59]  Manoil C, Mekalanos JJ, Beckwith J (1990) Alkaline phosphatase fusions: sensors of subcellular location. J Bacteriol 172: 515–518.
[60]  Eskelinen S, Haikonen M, Raisanen S (1983) Ferene-S as the chromogen for serum iron determinations. Scand J Clin Lab Invest 43: 453–455. doi: 10.1080/00365518309168286
[61]  Siegel LM (1965) A direct microdetermination for sulfide. Anal Biochem 11: 126–132. doi: 10.1016/0003-2697(65)90051-5
[62]  von Wachenfeldt C, de Vries S, van der Oost J (1994) The CuA site of the caa3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre. FEBS Lett 340: 109–113. doi: 10.1016/0014-5793(94)80182-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133