[1] | Ferry JG (2010) How to make a living exhaling methane. Annu Rev Microbiol 64: 453–473. doi: 10.1146/annurev.micro.112408.134051
|
[2] | Welte C, Deppenmeier U (2013) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta: in press.
|
[3] | Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191: 2826–2833. doi: 10.1128/jb.00563-08
|
[4] | Meuer J, Bartoschek S, Koch J, Kunkel A, Hedderich R (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 265: 325–335. doi: 10.1046/j.1432-1327.1999.00738.x
|
[5] | Welte C, Kratzer C, Deppenmeier U (2010) Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J 277: 3396–3403. doi: 10.1111/j.1742-4658.2010.07744.x
|
[6] | Welte C, Kallnik V, Grapp M, Bender G, Ragsdale S, et al. (2010) Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei. J Bacteriol 192: 674–678. doi: 10.1128/jb.01307-09
|
[7] | Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A 99: 5632–5637. doi: 10.1073/pnas.072615499
|
[8] | Welte C, Deppenmeier U (2011) Proton translocation in methanogens. Methods Enzymol 494: 257–280. doi: 10.1016/b978-0-12-385112-3.00013-5
|
[9] | Wang M, Tomb JF, Ferry JG (2011) Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol 11: 165. doi: 10.1186/1471-2180-11-165
|
[10] | Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, et al. (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12: 532–542. doi: 10.1101/gr.223902
|
[11] | Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, et al. (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188: 702–710. doi: 10.1128/jb.188.2.702-710.2006
|
[12] | Li L, Li Q, Rohlin L, Kim U, Salmon K, et al. (2007) Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J Proteome Res 6: 759–771. doi: 10.1021/pr060383l
|
[13] | Buan NR, Metcalf WW (2010) Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase. Mol Microbiol 75: 843–853. doi: 10.1111/j.1365-2958.2009.06990.x
|
[14] | Schlegel K, Welte C, Deppenmeier U, Muller V (2012) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J 279: 4444–4452. doi: 10.1111/febs.12031
|
[15] | Schlegel K, Leone V, Faraldo-Gomez JD, Muller V (2012) Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci USA 109: 947–952. doi: 10.1073/pnas.1115796109
|
[16] | Schlegel K, Muller V (2013) Evolution of Na+ and H+ bioenergetics in methanogenic archaea. Biochem Soc Trans 41: 421–426. doi: 10.1042/bst20120294
|
[17] | Jasso-Chavez R, Apolinario EE, Sowers KR, Ferry JG (2013) MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J Bacteriol 195: 3987–3994. doi: 10.1128/jb.00581-13
|
[18] | Biegel E, Schmidt S, Müller V (2009) Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 11: 1438–1443. doi: 10.1111/j.1462-2920.2009.01871.x
|
[19] | Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, et al. (2008) The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 105: 2128–2133. doi: 10.1073/pnas.0711093105
|
[20] | McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, et al. (2007) The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104: 7600–7605. doi: 10.1073/pnas.0610456104
|
[21] | Kim J, Hetzel M, Boiangiu CD, Buckel W (2004) Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. FEMS Microbiol Rev 28: 455–468. doi: 10.1016/j.femsre.2004.03.001
|
[22] | Curatti L, Brown CS, Ludden PW, Rubio LM (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci U S A 102: 6291–6296. doi: 10.1073/pnas.0501216102
|
[23] | Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, et al. (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22: 2614–2622. doi: 10.1093/emboj/cdg252
|
[24] | Backiel J, Juarez O, Zagorevski DV, Wang Z, Nilges MJ, et al. (2008) Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Biochemistry 47: 11273–11284. doi: 10.1021/bi800920j
|
[25] | Muller V, Imkamp F, Biegel E, Schmidt S, Dilling S (2008) Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125: 137–146. doi: 10.1196/annals.1419.011
|
[26] | Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, et al. (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188: 702–710. doi: 10.1128/jb.188.2.702-710.2006
|
[27] | Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, et al. (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399: 323–329.
|
[28] | Biegel E, Müller V (2010) Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107: 18138–18142. doi: 10.1073/pnas.1010318107
|
[29] | Biegel E, Schmidt S, Gonzalez JM, Muller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68: 613–634. doi: 10.1007/s00018-010-0555-8
|
[30] | Worm P, Stams AJ, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157: 280–289. doi: 10.1099/mic.0.043927-0
|
[31] | Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, et al. (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2: 69. doi: 10.3389/fmicb.2011.00069
|
[32] | Saaf A, Johansson M, Wallin E, von Heijne G (1999) Divergent evolution of membrane protein topology: the Escherichia coli RnfA and RnfE homologues. Proc Natl Acad Sci U S A 96: 8540–8544. doi: 10.1073/pnas.96.15.8540
|
[33] | Hess V, Schuchmann K, Muller V (2013) The Ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 288: 31496–31502. doi: 10.1074/jbc.m113.510255
|
[34] | Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR (2012) The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. MBio 4..
|
[35] | Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in Rhodobacter capsulatus and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36: 5509–5521. doi: 10.1021/bi970014q
|
[36] | Whitby LG (1953) A new method for preparing flavin-adenine dinucleotide. Biochem J 54: 437–442.
|
[37] | Juarez O, Barquera B (2012) Insights into the mechanism of electron transfer and sodium translocation of the Na+-pumping NADH:quinone oxidoreductase. Biochim Biophys Acta 1817: 1823–1832. doi: 10.1016/j.bbabio.2012.03.017
|
[38] | Nakayama Y, Yasui M, Sugahara K, Hayashi M, Unemoto T (2000) Covalently bound flavin in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 474: 165–168. doi: 10.1016/s0014-5793(00)01595-7
|
[39] | Jouanneau Y, Jeong HS, Hugo N, Meyer C, Willison JC (1998) Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus. Characterization of two membrane-bound iron-sulfur proteins. Eur J Biochem 251: 54–64. doi: 10.1046/j.1432-1327.1998.2510054.x
|
[40] | Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106: 1760–1765. doi: 10.1073/pnas.0813167106
|
[41] | Suharti, Strampraad MJ, Schroder I, de Vries S (2001) A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry 40: 2632–2639. doi: 10.1021/bi0020067
|
[42] | Clements AP, Kilpatrick L, Lu WP, Ragsdale SW, Ferry JG (1994) Characterization of the iron-sulfur clusters in ferredoxin from acetate-grown Methanosarcina thermophila. J Bacteriol 176: 2689–2693.
|
[43] | Schmidt S, Biegel E, Muller V (2009) The ins and outs of Na+ bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787: 691–696. doi: 10.1016/j.bbabio.2008.12.015
|
[44] | Meyer B, Kuehl JV, Price MN, Ray J, Deutschbauer AM, et al.. (2014) The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-Flox and Rnf. Environ Microbiol: in press.
|
[45] | Verkhovsky MI, Bogachev AV (2010) Sodium-translocating NADH:Quinone oxidoreductase as a redox-driven ion pump. Biochim Biophys Acta 1797: 738–746. doi: 10.1016/j.bbabio.2009.12.020
|
[46] | Armstrong FA, George SJ, Thomson AJ, Yates MG (1988) Direct electrochemistry in the characterisation of redox proteins: novel properties of Azotobacter 7Fe ferredoxin. FEBS Lett 234: 107–110. doi: 10.1016/0014-5793(88)81313-9
|
[47] | Maupin-Furlow J, Ferry JG (1996) Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol 178: 340–346.
|
[48] | Ragsdale SW, Lindahl PA, Munck E (1987) Mossbauer, EPR, and optical studies of the corrinoid;iron-sulfur protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum. J Biol Chem 262: 14289–14297.
|
[49] | Lu WP, Schiau I, Cunningham JR, Ragsdale SW (1993) Sequence and expression of the gene encoding the corrinoid; iron-sulfur protein from clostridium-thermoaceticum and reconstitution of the recombinant protein to full activity. J Biol Chem 268: 5605–5614.
|
[50] | Masepohl B, Klipp W (1996) Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus. Arch Microbiol 165: 80–90. doi: 10.1007/s002030050301
|
[51] | Saeki K, Kumagai H (1998) The rnf gene products in Rhodobacter capsulatus play an essential role in nitrogen fixation during anaerobic DMSO-dependent growth in the dark. Arch Microbiol 169: 464–467. doi: 10.1007/s002030050598
|
[52] | Tietze M, Beuchle A, Lamla I, Orth N, Dehler M, et al. (2003) Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea. ChemBioChem 4: 333–335. doi: 10.1002/cbic.200390053
|
[53] | Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, et al. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554–559. doi: 10.1038/nbt959
|
[54] | Suharti S, Murakami KS, de Vries S, Ferry JG (2008) Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans. Biochemistry 47: 11528–11535. doi: 10.1021/bi801012p
|
[55] | Melen K, Krogh A, von Heijne G (2003) Reliability measures for membrane protein topology prediction algorithms. J Mol Biol 327: 735–744. doi: 10.1016/s0022-2836(03)00182-7
|
[56] | McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16: 404–405. doi: 10.1093/bioinformatics/16.4.404
|
[57] | Lu C, Bentley WE, Rao G (2004) A high-throughput approach to promoter study using green fluorescent protein. Biotechnol Bioeng Prog 20: 1634–1640.
|
[58] | Melchers K, Schuhmacher A, Buhmann A, Weitzenegger T, Belin D, et al. (1999) Membrane topology of CadA homologous P-type ATPase of Helicobacter pylori as determined by expression of phoA fusions in Escherichia coli and the positive inside rule. Res Microbiol 150: 507–520. doi: 10.1016/s0923-2508(99)00106-0
|
[59] | Manoil C, Mekalanos JJ, Beckwith J (1990) Alkaline phosphatase fusions: sensors of subcellular location. J Bacteriol 172: 515–518.
|
[60] | Eskelinen S, Haikonen M, Raisanen S (1983) Ferene-S as the chromogen for serum iron determinations. Scand J Clin Lab Invest 43: 453–455. doi: 10.1080/00365518309168286
|
[61] | Siegel LM (1965) A direct microdetermination for sulfide. Anal Biochem 11: 126–132. doi: 10.1016/0003-2697(65)90051-5
|
[62] | von Wachenfeldt C, de Vries S, van der Oost J (1994) The CuA site of the caa3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre. FEBS Lett 340: 109–113. doi: 10.1016/0014-5793(94)80182-7
|