Identification of Clinically Relevant Fungi and Prototheca Species by rRNA Gene Sequencing and Multilocus PCR Coupled with Electrospray Ionization Mass Spectrometry
Background Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse. Methods One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5′ end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS. Results For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively. Conclusions rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi.
References
[1]
Castón-Osorio JJ, Rivero A, Torre-Cisneros J (2008) Epidemiology of invasive fungal infection. Int J Antimicrob Agents 32: S103–S109. doi: 10.1016/s0924-8579(08)70009-8
[2]
Kriengkauykiat J, Ito JI, Dadwal SS (2011) Epidemiology and treatment approaches in management of invasive fungal infections. Clin Epidemiol 3: 175–191.
Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, et al. (2006) Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43: 25–31.
Cuenca-Estrella M, Bernal-Martinez L, Buitrago MJ, Castelli MV, Gomez-Lopez A, et al. (2008) Update on the epidemiology and diagnosis of invasive fungal infection. Int J Antimicrob Agents 32(Suppl 2): S143–S 147. doi: 10.1016/s0924-8579(08)70016-5
[7]
Juhász A, Engi H, Pferffer I, Kucsera J, Vágv?lgyi C, et al. (2007) Interpretation of mtDNA RFLP variability among Aspergillus tubingensis isolates. Antonie Van Leeuwenhoek 91: 209–216. doi: 10.1007/s10482-006-9110-x
[8]
Spanu T, Posteraro B, Fiori B, D'Inzeo T, Campoli S, et al. (2012) Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol 50: 176–179. doi: 10.1128/jcm.05742-11
[9]
De Carolis E, Posteraro B, Lass-Fl?rl C, Vella A, Florio AR, et al. (2012) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Miceobiol Infect 18: 475–484. doi: 10.1111/j.1469-0691.2011.03599.x
[10]
Borman AM, Linton CJ, Miles SJ, Johnson EM (2008) Molecular identification of pathogenic fungi. J Antimicrob Chemother 61(Suppl 1): i7–i12.
[11]
Balajee SA, Borman AM, Brandt ME, Cano J, Cuenca-Estrella M, et al. (2009) Sequence-based identification of Aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol 47: 877–884. doi: 10.1128/jcm.01685-08
[12]
Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2: 495–517. doi: 10.1111/j.1567-1364.2002.tb00117.x
[13]
Rakeman JL, Bui U, Lafe K, Chen YC, Honeycutt RJ, et al. (2005) Multilocus DNA sequence comparisons rapidly identify pathogenic molds. J Clin Microbiol 43: 3324–3333. doi: 10.1128/jcm.43.7.3324-3333.2005
[14]
Ciardo DE, Lucke K, Imhof A, Bloemberg GV, B?ttger EC (2010) Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: a 5-Year Study. J Clin Microbiol 48: 2809–2813. doi: 10.1128/jcm.00289-10
[15]
Shendure JA, Porreca GJ, Church GM, Gardner AF, Hendrickson CL, et al. (2011) Overview of DNA sequencing strategies. Curr Protoc Mol Biol 81: 7.1.1–7.1.11.
[16]
Ecker DJ, Sampath R, Massire C, Blyn LB, Hall TA, et al. (2008) Ibis T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol 6: 553–558. doi: 10.1038/nrmicro1918
[17]
Ecker DJ, Sampath R, Li H, Massire C, Matthews HE, et al. (2010) New technology for rapid molecular diagnosis of bloodstream infections. Expert Rev Mol Diagn 10: 399–415. doi: 10.1586/erm.10.24
[18]
Wolk DM, Blyn LB, Hall TA, Sampath R, Ranken R, et al. (2009) Pathogen profiling: rapid molecular characterization of Staphylococcus aureus by PCR/electrospray ionization-mass spectrometry and correlation with phenotype. J Clin Microbiol 47: 3129–3137. doi: 10.1128/jcm.00709-09
[19]
Gu Z, Hall TA, Frinder M, Walsh TJ, Hayden RT (2012) Evaluation of repetitive sequence PCR and PCR-mass spectrometry for the identification of clinically relevant Candida species. Med Mycol 50: 259–265. doi: 10.3109/13693786.2011.600341
[20]
Kaleta EJ, Clark AE, Johnson DR, Gamage DC, Wysocki VH, et al. (2011) Use of PCR coupled with electrospray mass spectrometry for rapid identification of bacterial and yeast bloodstream pathogens from blood culture bottles. J Clin Microbiol 49: 345–353. doi: 10.1128/jcm.00936-10
[21]
Massire C, Buelow DR, Zhang SX, Lovari R, Matthews HE, et al. (2013) PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol 51: 959–966. doi: 10.1128/jcm.02621-12
[22]
Simner PJ, Uhl JR, Hall L, Weber MM, Walchak RC, et al. (2013) Broad-range direct detection and identification of fungi by use of the PLEX-ID PCR-electrospray ionization mass spectrometry (ESI-MS) system. J Clin Microbiol 51: 1699–1706. doi: 10.1128/jcm.03282-12
[23]
Kwon-Chung KJ, Polacheck I, Bennett JE (1982) Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol 15: 535–537. doi: 10.1378/chest.95.3_supplement.172s-a
[24]
Klein KR, Hall L, Deml SM, Rysavy JM, Wohlfiel SL, et al. (2009) Identification of Cryptococcus gattii by use of L-canavanine glycine bromothymol blue medium and DNA sequencing. J Clin Microbiol 47: 3669–3672. doi: 10.1128/jcm.01072-09
[25]
Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, et al. (2001) Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39: 4042–4051. doi: 10.1128/jcm.39.11.4042-4051.2001
[26]
Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, et al. (2001) Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol 38: 2302–2310.
[27]
Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35: 1216–1223.
[28]
Ciardo DE, Sch?r G, Altwegg M, B?ttger EC, Bosshard PP (2007) Identification of moulds in the diagnostic laboratory–an algorithm implementing molecular and phenotypic methods. Diagn Microbiol Infect Dis 59: 49–60. doi: 10.1016/j.diagmicrobio.2007.04.020
[29]
Boyanton BL Jr, Luna RA, Fasciano LR, Menne KG, Versalovic J (2008) DNA pyrosequencing-based identification of pathogenic Candida species by using the internal transcribed spacer 2 region. Arch Pathol Lab Med 132: 667–674.
[30]
Shin JH, Ranken R, Sefers SE, Lovari R, Quinn CD, et al. (2013) Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J Clin Microbiol 51: 136–141. doi: 10.1128/jcm.01907-12
[31]
Chang PK, Ehrlich KC (2010) What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol 138: 189–199. doi: 10.1016/j.ijfoodmicro.2010.01.033
[32]
Balajee SA, Sigler L, Brandt ME (2007) DNA and the classical way: identification of medically important molds in the 21st century. Med Mycol 45: 475–490. doi: 10.1080/13693780701449425
[33]
Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, et al. (2006) Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol 44: 693–699. doi: 10.1128/jcm.44.3.693-699.2006
[34]
Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87: 99–108. doi: 10.1007/s00253-010-2585-4
[35]
Eberhardt U (2012) Methods for DNA barcoding of fungi. Methods Mol Biol 858: 183–205. doi: 10.1007/978-1-61779-591-6_9
[36]
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109: 6241–6246.
[37]
Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50: 1351–1371. doi: 10.1099/00207713-50-3-1351
[38]
Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9(Suppl s1): 83–89. doi: 10.1111/j.1755-0998.2009.02635.x
[39]
Daniel HM, Meyer W (2003) Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int J Food Microbiol 86: 61–78. doi: 10.1016/s0168-1605(03)00248-4
[40]
Balajee SA, Houbraken J, Verweij PE, Hong SB, Yaghuchi T, et al. (2007) Aspergillus species identification in the clinical setting. Stud Mycol 59: 39–46. doi: 10.3114/sim.2007.59.05
[41]
McTaggart L, Richardson SE, Seah C, Hoang L, Fothergill A, et al. (2011) Rapid identification of Cryptococcus neoformans var. grubii, C. neoformans var. neoformans, and C. gattii by use of rapid biochemical tests, differential media, and DNA sequencing. J Clin Microbiol 49: 2522–2527. doi: 10.1128/jcm.00502-11
[42]
Desnos-Ollivier M, Ragon M, Robert V, Raoux D, Gantier JC, et al. (2008) Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). J Clin Microbiol 46: 3237–3242. doi: 10.1128/jcm.01451-08