Invasion and subsequent metastasis is the major cause of death from most cancers including prostate cancer. Herein we report on the potential tumor suppressive properties of Rab7, a GTPase that regulates trafficking of lysosomes. The movement of lysosomes to the cell surface in response to environmental cues increases the secretion of proteinases and cell invasion. We determined that Troglitazone and other members of the Thiazolidinedione family inhibit cell-surface directed lysosome trafficking and cathepsin B secretion through a Rab7-dependent mechanism. Moreover, Rab7 shRNA expressing cells were found to be more invasive in vitro and in vivo. Increased invasiveness was accompanied by elevated expression of the c-Met receptor and prolonged downstream signaling, thereby supporting a role for Rab7 as a mediator of signaling down-regulation. Taken together, these results suggested that Rab7 acts as a negative regulator of prostate tumor growth and invasion, providing further evidence for its potential as a tumor suppressor.
References
[1]
Benvenuti S, Comoglio PM (2007) The MET Receptor Tyrosine Kinase in Invasion and Metastasis. J Cell Physiol 213: 316–325. doi: 10.1002/jcp.21183
[2]
Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Met Rev 28: 15–33. doi: 10.1007/s10555-008-9169-0
[3]
Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. 8: 56–61. doi: 10.1038/nrc2255
[4]
Moellering R, Black K, Krishnamurty C, Baggett BK, Stafford P, et al. (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25: 411–425. doi: 10.1007/s10585-008-9145-7
[5]
Friedl P, Wolf K (2008) Tube Travel: The Role of Proteases in Individual and Collective Cancer Cell Invasion. Cancer Res 68: 7247–7249. doi: 10.1158/0008-5472.can-08-0784
[6]
Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. 3: 362–374. doi: 10.1038/nrc1075
[7]
Sloane BF, Yan S, Podgorski I, Linebaugh BE, Cher ML, et al. (2005) Cathepsin B and tumor proteolysis: contribution of the tumor microenvironment. Sem Cancer Biol 15: 149–157. doi: 10.1016/j.semcancer.2004.08.001
[8]
Roshy S, Sloane BF, Moin K (2003) Pericellular cathepsin B and maligant progression. Cancer Met Rev 22: 271–286. doi: 10.1023/a:1023007717757
[9]
Steffan JJ, Snider JL, Skalli O, Welbourne T, Cardelli JA (2009) Na+/H+ Exchangers and RhoA Regulate Acidic Extracellular pH-Induced Lysosome Trafficking in Prostate Cancer Cells. Traffic 10: 737–753. doi: 10.1111/j.1600-0854.2009.00904.x
[10]
Steffan JJ, Williams BC, Welbourne T, Cardelli JA (2010) HGF-induced invasion by prostate tumor cells requires anterograde lysosome trafficking and activity of Na+-H+ exchangers. J Cell Sci 123: 1151–1159. doi: 10.1242/jcs.063644
[11]
Nishimura Y, Sameni M, Sloane BF (1998) Malignant transformation alters intracellular trafficking of lysosomal cathepsin D in human breast epithelial cells. Pathol Oncol Res 4: 283–296. doi: 10.1007/bf02905219
[12]
Rozhin J, Sameni M, Ziegler GH, Sloane BF (1994) Pericellular pH Affects Distribution and Secretion of Cathepsin B in Malignant Cells. Cancer Res 54: 6517–6525.
Cordonnier M-N, Dauzonne D, Louvard D, Coudrier E (2001) Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of Lysosomes. Mol Biol Cell 12: 4013–4029. doi: 10.1091/mbc.12.12.4013
[15]
Bagshaw RD, Callahan JW, Mahuran DJ (2006) The Arf-family protein, Arl8b, is involved in the spatial distribution of lysosomes. Biochem Biophys Res Commun 344: 1186–1191. doi: 10.1016/j.bbrc.2006.03.221
[16]
Jordens I (2006) Rab7 and Rab27a control two motor protein activities involved in melanosomal transport. Pigment Cell Res 19: 412–423. doi: 10.1111/j.1600-0749.2006.00329.x
[17]
Zhang M, Chen L, Wang S, Wang T (2009) Rab7: roles in membrane trafficking and disease. Biosci Rep 29: 193–209. doi: 10.1042/bsr20090032
[18]
Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, et al. (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11: 1680–1685. doi: 10.1016/s0960-9822(01)00531-0
[19]
Romero Rosales KR, Peralta ER, Guenther GG, Wong SY, Edinger AL (2009) Rab7 Activation by Growth Factor Withdrawal Contributes to the Induction of Apoptosis. Mol Biol Cell 20: 2831–2840. doi: 10.1091/mbc.e08-09-0911
[20]
Edinger AL (2005) Growth factors regulate cell survival by controlling nutrient transporter expression. Biochem Soc Trans 33: 225–227. doi: 10.1042/bst0330225
[21]
Kopelovich L, Fay JR, Glazer RI, Crowell JA (2002 ) Peroxisome Proliferator-activated Receptor Modulators As Potential Chemopreventive Agents. Molecular Cancer Therapeutics 1 357–363.
[22]
Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, et al. (2003) Extracellular Acidification Alters Lysosomal Trafficking in Human Breast Cancer Cells. Neoplasia 5: 533–545. doi: 10.1016/s1476-5586(03)80037-4
[23]
Wright PK (2008) Targeting vesicle trafficking: an importnat approach to cancer chemotherapy. Rec Pat Anti-Can Drug Dis 3: 137–147. doi: 10.2174/157489208784638730
[24]
Rozhin J, Gomez AP, Ziegler GH, Nelson KK, Chang YS, et al. (1990) Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors. Cancer Res 50: 6278–6284.
[25]
Rempel SA, Rosenblum ML, Mikkelsen T, Yan P-S, Ellis KD, et al. (1994) Cathepsin B Expression and Localization in Glioma Progression and Invasion. Cancer Res 54: 6027–6031.
[26]
Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta 291: 113–135. doi: 10.1016/s0009-8981(99)00224-7
[27]
Wei S, Yang J, Lee S-L, Kulp SK, Chen C-S (2009) PPAR[gamma]-independent antitumor effects of thiazolidinediones. Cancer Lett 276: 119–124. doi: 10.1016/j.canlet.2008.08.008
[28]
Weng J-R, Chen C-Y, Pinzone JJ, Ringel MD, Chen C-S (2006) Beyond peroxisome proliferator-activated receptor {gamma} signaling: the multi-facets of the antitumor effect of thiazolidinediones. Endocr Relat Cancer 13: 401–413. doi: 10.1677/erc.1.01182
[29]
Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8: 835–850. doi: 10.1038/nrc2521
[30]
Progida C, Malerod L, Stuffers S, Brech A, Bucci C, et al. (2007) RILP is required for the proper morphology and function of late endosomes. J Cell Sci 120: 3729–3737. doi: 10.1242/jcs.017301
[31]
Sakane A, Hatakeyama S, Sasaki T (2007) Involvement of Rabring7 in EGF receptor degradation as an E3 ligase. Biochem Biophys Res Commun 357: 1058–1064. doi: 10.1016/j.bbrc.2007.04.052
[32]
Ceresa BP, Bahr SJ (2006) Rab7 Activity Affects Epidermal Growth Factor:Epidermal Growth Factor Receptor Degradation by Regulating Endocytic Trafficking from the Late Endosome. J Biol Chem 281: 1099–1106. doi: 10.1074/jbc.m504175200
[33]
Saxena S, Bucci C, Weis J, Kruttgen A (2005) The Small GTPase Rab7 Controls the Endosomal Trafficking and Neuritogenic Signaling of the Nerve Growth Factor Receptor TrkA. J Neurosci 25: 10930–10940. doi: 10.1523/jneurosci.2029-05.2005
[34]
BasuRay S, Mukherjee S, Romero E, Wilson MC, Wandinger-Ness A (2010) Rab7 Mutants Associated with Charcot-Marie-Tooth Disease Exhibit Enhanced NGF-Stimulated Signaling. PLoS ONE 5: e15351 EP -.
[35]
BasuRay S, Mukherjee S, Romero EG, Seaman MNJ, Wandinger-Ness A (2013) Rab7 Mutants Associated with Charcot-Marie-Tooth Disease Cause Delayed Growth Factor Receptor Transport and Altered Endosomal and Nuclear Signaling. J Biol Chem 288: 1135–1149. doi: 10.1074/jbc.m112.417766
[36]
Skorobogata O, Rocheleau CE (2012) RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis elegans. PLoS ONE 7: e36489 EP -.
Davidson B, Zhang Z, Kleinberg L, Li M, Florenes VA, et al. (2006) Gene Expression Signatures Differentiate Ovarian/Peritoneal Serous Carcinoma from Diffuse Malignant Peritoneal Mesothelioma. Clin Cancer Res 12: 5944–5950. doi: 10.1158/1078-0432.ccr-06-1059
[39]
Croizet-Berger K, Daumerie C, Couvreur M, Courtoy PJ, van den Hove M-F (2002) The endocytic catalysts, Rab5a and Rab7, are tandem regulators of thyroid hormone production. PNAS 99: 8277–8282. doi: 10.1073/pnas.122187699
[40]
Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, et al. (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39: 41–51. doi: 10.1038/ng1935
[41]
Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, et al. (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. PNAS 101: 811–816. doi: 10.1073/pnas.0304146101
[42]
Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, et al. (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8: 393–406. doi: 10.1016/j.ccr.2005.10.001
[43]
Vanaja DK, Cheville JC, Iturria SJ, Young CYF (2003) Transcriptional Silencing of Zinc Finger Protein 185 Identified by Expression Profiling Is Associated with Prostate Cancer Progression. Cancer Res 63: 3877–3882.
[44]
Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, et al. (2008) Tumor Immunobiological Differences in Prostate Cancer between African-American and European-American Men. Cancer Res 68: 927–936. doi: 10.1158/0008-5472.can-07-2608
[45]
Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, et al. (2006) Sex-Determining Region Y Box 4 Is a Transforming Oncogene in Human Prostate Cancer Cells. Cancer Res 66: 4011–4019. doi: 10.1158/0008-5472.can-05-3055