全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pentacyclic Nitrofurans with In Vivo Efficacy and Activity against Nonreplicating Mycobacterium tuberculosis

DOI: 10.1371/journal.pone.0087909

Full-Text   Cite this paper   Add to My Lib

Abstract:

The reductively activated nitroaromatic class of antimicrobials, which include nitroimidazole and the more metabolically labile nitrofuran antitubercular agents, have demonstrated some potential for development as therapeutics against dormant TB bacilli. In previous studies, the pharmacokinetic properties of nitrofuranyl isoxazolines were improved by incorporation of the outer ring elements of the antitubercular nitroimidazole OPC-67683. This successfully increased stability of the resulting pentacyclic nitrofuran lead compound Lee1106 (referred to herein as 9a). In the current study, we report the synthesis and antimicrobial properties of 9a and panel of 9a analogs, which were developed to increase oral bioavailability. These hybrid nitrofurans remained potent inhibitors of Mycobacterium tuberculosis with favorable selectivity indices (>150) and a narrow spectrum of activity. In vivo, the pentacyclic nitrofuran compounds showed long half-lives and high volumes of distribution. Based on pharmacokinetic testing and lack of toxicity in vivo, 9a remained the series lead. 9a exerted a lengthy post antibiotic effect and was highly active against nonreplicating M. tuberculosis grown under hypoxia. 9a showed a low potential for cross resistance to current antitubercular agents, and a mechanism of activation distinct from pre-clinical tuberculosis candidates PA-824 and OPC-67683. Together these studies show that 9a is a nanomolar inhibitor of actively growing as well as nonreplicating M. tuberculosis.

References

[1]  WHO (2012) Global Tuberculosis Report 2012. Geneva, Switzerland: WHO.
[2]  Koenig R (2008) Drug-resistant tuberculosis. In South Africa, XDR TB and HIV prove a deadly combination. Science 319: 894–897. doi: 10.1126/science.319.5865.894
[3]  Lafontaine D, Slavuski A, Vezhnina N, Sheyanenko O (2004) Treatment of multidrug-resistant tuberculosis in Russian prisons. Lancet: 246–247.
[4]  Van der Walt M, Lancaster J, Odendaal R, Davis JG, Shean K, et al. (2013) Serious treatment related adverse drug reactions amongst anti-retroviral naive MDR-TB patients. PLoS One 8: e58817. doi: 10.1371/journal.pone.0058817
[5]  Esmail H, Barry CE 3rd, Wilkinson RJ (2012) Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discov Today 17: 514–521. doi: 10.1016/j.drudis.2011.12.013
[6]  Boshoff HI, Barry CE 3rd (2005) Tuberculosis - metabolism and respiration in the absence of growth. Nat Rev Microbiol 3: 70–80. doi: 10.1038/nrmicro1065
[7]  Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, et al. (2007) Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51: 3338–3345. doi: 10.1128/aac.00276-07
[8]  Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, et al. (2000) A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405: 962–966.
[9]  Barry CE 3rd, Boshoff HI, Dowd CS (2004) Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. Curr Pharm Des 10: 3239–3262. doi: 10.2174/1381612043383214
[10]  Diacon AH, Dawson R, du Bois J, Narunsky K, Venter A, et al. (2012) Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother 56: 3027–3031. doi: 10.1128/aac.06125-11
[11]  Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, et al. (2012) Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother 56: 3271–3276. doi: 10.1128/aac.06126-11
[12]  Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, et al. (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3: e466. doi: 10.1371/journal.pmed.0030466
[13]  Sasaki H, Haraguchi Y, Itotani M, Kuroda H, Hashizume H, et al. (2006) Synthesis and antituberculosis activity of a novel series of optically active 6-nitro-2,3-dihydroimidazo[2,1-b]oxazole?s. J Med Chem 49: 7854–7860. doi: 10.1021/jm060957y
[14]  Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, et al. (2012) Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366: 2151–2160. doi: 10.1056/nejmoa1112433
[15]  Tangallapally RP, Sun D, Rakesh, Budha N, Lee RE, et al. (2007) Discovery of novel isoxazolines as anti-tuberculosis agents. Bioorg Med Chem Lett 17: 6638–6642. doi: 10.1016/j.bmcl.2007.09.048
[16]  de Carvalho LP, Lin G, Jiang X, Nathan C (2009) Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J Med Chem 52: 5789–5792. doi: 10.1021/jm9010719
[17]  Sisson G, Goodwin A, Raudonikiene A, Hughes NJ, Mukhopadhyay AK, et al. (2002) Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrob Agents Chemother 46: 2116–2123. doi: 10.1128/aac.46.7.2116-2123.2002
[18]  Budha NR, Mehrotra N, Tangallapally R, Rakesh, Qi J, et al. (2008) Pharmacokinetically-guided lead optimization of nitrofuranylamide anti-tuberculosis agents. AAPS J 10: 157–165. doi: 10.1208/s12248-008-9017-8
[19]  Baker WR, Cai S, Keeler EL (1997) Preparation of bicyclic nitroimidazole antibacterial compounds. WO9701562A1.
[20]  Tsubouchi H, Sasaki H, Kuroda H, Itotani M, Hasegawa T, et al. (2003) S. 2,3-Dihydro-6-nitroimidazo[2,1-b]oxazole?s.WO2004033463A1.
[21]  Hurdle JG, Lee RB, Budha NR, Carson EI, Qi J, et al. (2008) A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. J Antimicrob Chemother 62: 1037–1045. doi: 10.1093/jac/dkn307
[22]  Rakesh, Bruhn D, Madhura DB, Maddox M, Lee RB, et al. (2012) Antitubercular nitrofuran isoxazolines with improved pharmacokinetic properties. Bioorg Med Chem 20: 6063–6072. doi: 10.1016/j.bmc.2012.08.023
[23]  Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43: 717–731. doi: 10.1046/j.1365-2958.2002.02779.x
[24]  Honaker RW, Dhiman RK, Narayanasamy P, Crick DC, Voskuil MI (2010) DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J Bacteriol 192: 6447–6455. doi: 10.1128/jb.00978-10
[25]  Ramon-Garcia S, Ng C, Anderson H, Chao JD, Zheng X, et al. (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother 55: 3861–3869. doi: 10.1128/aac.00474-11
[26]  Lenaerts AJ, Gruppo V, Brooks JV, Orme IM (2003) Rapid in vivo screening of experimental drugs for tuberculosis using gamma interferon gene-disrupted mice. Antimicrob Agents Chemother 47: 783–785. doi: 10.1128/aac.47.2.783-785.2003
[27]  Lenaerts AJ, Gruppo V, Marietta KS, Johnson CM, Driscoll DK, et al. (2005) Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother 49: 2294–2301. doi: 10.1128/aac.49.6.2294-2301.2005
[28]  Vicente E, Villar R, Burguete A, Solano B, Perez-Silanes S, et al. (2008) Efficacy of quinoxaline-2-carboxylate 1,4-di-N-oxide derivatives in experimental tuberculosis. Antimicrob Agents Chemother 52: 3321–3326. doi: 10.1128/aac.00379-08
[29]  Hamper BC, Leschinsky KL, Massey SS, Bell CL, Brannigan LH, et al. (1995) Synthesis and Herbicidal Activity of 3-Aryl-5-(haloalkyl)-4-isoxazolecarboxam?idesand Their Derivatives. J Agric Food Chem 43: 219–228. doi: 10.1021/jf00049a040
[30]  Ashtekar DR, Costa-Perira R, Nagrajan K, Vishvanathan N, Bhatt AD, et al. (1993) In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 37: 183–186. doi: 10.1128/aac.37.2.183
[31]  Ji B, Lefrancois S, Robert J, Chauffour A, Truffot C, et al. (2006) In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Chemother 50: 1921–1926. doi: 10.1128/aac.00052-06
[32]  Griffith DE, Aksamit TR (2012) Therapy of refractory nontuberculous mycobacterial lung disease. Curr Opin Infect Dis 25: 218–227. doi: 10.1097/qco.0b013e3283511a64
[33]  Smith MA, Edwards DI (1995) Redox potential and oxygen concentration as factors in the susceptibility of Helicobacter pylori to nitroheterocyclic drugs. J Antimicrob Chemother 35: 751–764. doi: 10.1093/jac/35.6.751
[34]  Craig WA, Vogelman B (1987) The postantibiotic effect. Ann Intern Med 106: 900–902. doi: 10.7326/0003-4819-106-6-900
[35]  Parsley TL, Provonchee RB, Glicksman C, Zinner SH (1977) Synergistic activity of trimethoprim and amikacin against gram-negative bacilli. Antimicrob Agents Chemother 12: 349–352. doi: 10.1128/aac.12.3.349
[36]  Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, et al. (2010) The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192: 1662–1670. doi: 10.1128/jb.00926-09
[37]  Cellitti SE, Shaffer J, Jones DH, Mukherjee T, Gurumurthy M, et al. (2012) Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824. Structure 20: 101–112. doi: 10.1016/j.str.2011.11.001
[38]  Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, et al. (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322: 1392–1395. doi: 10.1126/science.1164571
[39]  Gurumurthy M, Mukherjee T, Dowd CS, Singh R, Niyomrattanakit P, et al. (2012) Substrate specificity of the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis responsible for the bioreductive activation of bicyclic nitroimidazoles. FEBS J 279: 113–125. doi: 10.1111/j.1742-4658.2011.08404.x
[40]  Murugasu-Oei B, Dick T (2000) Bactericidal activity of nitrofurans against growing and dormant Mycobacterium bovis BCG. J Antimicrob Chemother 46: 917–919. doi: 10.1093/jac/46.6.917

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133