全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

New Findings in Cleavage Sites Variability across Groups, Subtypes and Recombinants of Human Immunodeficiency Virus Type 1

DOI: 10.1371/journal.pone.0088099

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Polymorphisms at cleavage sites (CS) can influence Gag and Pol proteins processing by the viral protease (PR), restore viral fitness and influence the virological outcome of specific antiretroviral drugs. However, data of HIV-1 variant-associated CS variability is scarce. Methods In this descriptive research, we examine the effect of HIV-1 variants on CS conservation using all 9,028 gag and 3,906 pol HIV-1 sequences deposited in GenBank, focusing on the 110 residues (10 per site) involved at 11 CS: P17/P24, P24/P2, P2/P7, P7/P1, P1/P6gag, NC/TFP, TFP/P6pol, P6pol/PR, PR/RTp51, RTp51/RTp66 and RTp66/IN. CS consensus amino acid sequences across HIV-1 groups (M, O, N, P), group M 9 subtypes and 51 circulating recombinant forms (CRF) were inferred from our alignments and compared to the HIV-1 consensus-of-consensuses sequence provided by GenBank. Results In all HIV-1 variants, the most conserved CS were PR/RTp51, RTp51/RTp66, P24/P2 and RTp66/IN and the least P2/P7 and P6pol/PR. Conservation was significantly lower in subtypes vs. recombinants in P2/P7 and TFP/P6pol and higher in P17/P24. We found a significantly higher conservation rate among Group M vs. non-M Groups HIV-1. The late processing sites at Gag (P7/P1) and GagPol precursors (PR/RTp51) presented a significantly higher conservation vs. the first CS (P2/P7) in the 4 HIV-1 groups. Here we show 52 highly conserved residues across HIV-1 variants in 11 CS and the amino acid consensus sequence in each HIV-1 group and HIV-1 group M variant for each 11 CS. Conclusions This is the first study to describe the CS conservation level across all HIV-1 variants and 11 sites in one of the largest available sequence HIV-1 dataset. These results could help other researchers for the future design of both novel antiretroviral agents acting as maturation inhibitors as well as for vaccine targeting CS.

References

[1]  Swanstrom R, Wills J (1997) Retroviral gene expression. II. Synthesis, processing, and assembly of viral proteins. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. New York: Cold Spring Harbor Laboratory. pp. 263–334.
[2]  Tessmer U, Kr?usslich HG (1998) Cleavage of HIV-1 proteinase from the N-terminally adjacent p6* protein is essential for efficient Gag polyprotein processing and viral infectivity. J Virol 72: 3459–3463.
[3]  de Oliveira T, Engelbrecht S, Janse van Rensburg E, Gordon M, Bishop K, et al. (2003) Variability at HIV-1 subtype C protease cleavage sites: an indication of viral fitness? J Virol 77: 9422–9430. doi: 10.1128/jvi.77.17.9422-9430.2003
[4]  Waheed AA, Freed EO (2012) HIV type 1 Gag as a target for antiviral therapy. AIDS Res Hum Retroviruses 28: 54–75. doi: 10.1089/aid.2011.0230
[5]  Fun A, Wensing AM, Verheyen J, Nijhuis M (2012) Human immunodeficiency virus Gag and protease: partners in resistance. Retrovirology 9: 63. doi: 10.1186/1742-4690-9-63
[6]  Adamson CS (2012) Protease-mediated maturation of HIV: inhibitors of protease and the maturation process. Mol Biol Int 2012: 1–13. doi: 10.1155/2012/604261
[7]  Lee SK, Potempa M, Kolli M, ?zen A, Schiffer CA, et al. (2012) Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J Biol Chem 287: 13279–13290. doi: 10.1074/jbc.m112.339374
[8]  Goodenow MM, Bloom G, Rose SL, Pomeroy SM, O’Brien PO, et al. (2002) Naturally occurring amino acid polymorphisms in HIV-1 Gag p7(NC) and the C-cleavage site impact Gag-Pol processing by HIV-1 protease. Virology 292: 137–149. doi: 10.1006/viro.2001.1184
[9]  Holguín A, Alvarez A, Soriano V (2006) Variability in the P6gag domains of HIV-1 involved in viral budding. AIDS 20: 624–627. doi: 10.1097/01.aids.0000210619.75707.21
[10]  Myint L, Matsuda M, Matsuda Z, Yokomaku Y, Chiba T, et al. (2004) Gag non-cleavage site mutations contribute to full recovery of viral fitness in protease inhibitor-resistant HIV-1. Antimicrob Agents Chemother 48: 444–452. doi: 10.1128/aac.48.2.444-452.2004
[11]  Doyon L, Payant C, Brakier-Gingras L, Lamarre D (1998) Novel Gag-Pol frameshift site in HIV-1 variants resistant to protease inhibitors. J Virol 72: 6146–6150.
[12]  Bally F, Martinez R, Peters S, Sudre P, Telenti A (2000) Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. AIDS Res Hum Retroviruses 16: 1209–1213. doi: 10.1089/08892220050116970
[13]  Maguire MF, Guinea R, Griffin P, Macmanus S, Elston RC, et al. (2002) Changes in HIV-1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. J Virol 76: 7398–7406. doi: 10.1128/jvi.76.15.7398-7406.2002
[14]  Dam E, Quercia R, Glass B, Descamps D, Launay O, et al. (2009) Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Pathog 5: e1000345. doi: 10.1371/journal.ppat.1000345
[15]  Banke S, Lillemark MR, Gerstoft J, Obel N, J?rgensen LB (2009) Positive selection pressure introduces secondary mutations at Gag cleavage sites in HIV-1 harboring major protease resistance mutations. J Virol 83: 8916–8924. doi: 10.1128/jvi.00003-09
[16]  Nijhuis M, van Maarseveen N, Schipper P (2005) Novel HIV-1 gag based protease drug resistance mechanism caused by an increased processing of the NC/p1 cleavage site. Antiv Ther 10: S117.
[17]  Nijhuis M, van Maarseveen NM, Lastere S, Schipper P, Coakley E, et al. (2007) A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med 4: e36. doi: 10.1371/journal.pmed.0040036
[18]  Verheyen J, Knops E, Kupfer B, Hamouda O, Somogyi S, et al. (2008) Prevalence of C-terminal gag cleavage site mutations in HIV from therapy-na?ve patients. Journal of Infection 58: 61–67. doi: 10.1016/j.jinf.2008.11.009
[19]  Ghosn J, Delaugerre C, Flandre P, Galimand J, Cohen-Codar I, et al. (2011) Polymorphism in Gag gene cleavage sites of HIV-1 non-B subtype and virological outcome of a first-line lopinavir/ritonavir single drug regimen. PLoS One 6: e24798. doi: 10.1371/journal.pone.0024798
[20]  Barrie KA, Perez EE, Lamers SL, Farmerie WG, Dunn BM, et al. (1996) Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Virology 219: 407–416. doi: 10.1006/viro.1996.0266
[21]  Adamson CS, Freed EO (2008) Recent progress in antiretrovirals–lessons from resistance. Drug Discov Today 13: 424–432. doi: 10.1016/j.drudis.2008.02.003
[22]  Zhang M, Foley B, Schultz AK, Macke JP, Bulla I, et al. (2011) The role of recombination in the emergence of a complex and dynamic HIV epidemic. Retrovirology 7: 25. doi: 10.1186/1742-4690-7-25
[23]  Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, et al. (2002) Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots. J Virol 76 11273–11282. doi: 10.1128/jvi.76.22.11273-11282.2002
[24]  Gao Y, Abreha M, Nelson KN, Baird H, Dudley DM, et al. (2011) Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs. Retrovirology 8: 5. doi: 10.1186/1742-4690-8-5
[25]  Peeters M (2000) Recombinant HIV sequences: Their role in the global epidemic. In: Kuiken C, Foley B, Hahn B, Korber B, McCutchan F, Marx P, editors. Theorical Biology and Biophysis Group. Los Alamos NM: National Laboratory. pp. I-39-1-54.
[26]  Yebra G, de Mulder M, Martín L, Rodríguez C, Labarga P, et al. (2012) Most HIV type 1 non-B infections in the Spanish cohort of antiretroviral treatment-na?ve HIV-infected patients (CoRIS) are due to recombinant viruses. J Clin Microbiol 50: 407–413. doi: 10.1128/jcm.05798-11
[27]  Liégeois F, Reteno DG, Mouinga-Ondémé A, Sica J, Rouet F (2013) Short communication: high natural polymorphism in the gag gene cleavage sites of non-B HIV type 1 isolates from Gabon. AIDS Res Hum Retroviruses 29: 1179–1182. doi: 10.1089/aid.2013.0024
[28]  Luo M, Capina R, Daniuk C, Tuff J, Peters H, et al. (2013) Immunogenicity of sequences around HIV-1 protease cleavage sites: Potential targets and population coverage analysis for a HIV vaccine targeting protease cleavage sites. Vaccine 31: 3000–3008. doi: 10.1016/j.vaccine.2013.04.057
[29]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[30]  Pettit SC, Lindquist JN, Kaplan AH, Swanstrom R (2005) Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates. Retrovirology 2: 66.
[31]  Doherty RS, De Oliveira T, Seebregts C, Danaviah S, Gordon M, et al. (2005) BioAfrica’s HIV-1 proteomics resource: combining protein data with bioinformatics tools. Retrovirology 2: 18. doi: 10.1186/1742-4690-2-18
[32]  Malet I, Roquebert B, Dalban C, Wirden M, Amellal B, et al. (2007) Association of Gag cleavage sites to protease mutations and to virological response in HIV-1 treated patients. J Infect 54: 367–374. doi: 10.1016/j.jinf.2006.06.012
[33]  Snoeck J, Fellay J, Bartha I, Douek DC, Telenti A (2011) Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints. Retrovirology 8: 87. doi: 10.1186/1742-4690-8-87
[34]  Shehu-Xhilaga M, Kraeusslich HG, Pettit S, Swanstrom R, Lee JY, et al. (2001) Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation. J Virol 75: 9156–9164. doi: 10.1128/jvi.75.19.9156-9164.2001
[35]  Tomasselli AG, Heinrikson RL (1994) Specificity of retroviral proteases: an analysis of viral and nonviral protein substrates. Methods Enzymol 241: 279–301. doi: 10.1016/0076-6879(94)41069-0
[36]  Müller B, Patschinsky T, Kr?usslich HG (2002) The late-domain-containing protein p6 is the predominant phosphoprotein of human immunodeficiency virus type 1 particles. J Virol 76: 1015–1024. doi: 10.1128/jvi.76.3.1015-1024.2002
[37]  Sadiq SK, Noé F, De Fabritiis G (2012) Kinetic characterization of the critical step in HIV-1 protease maturation. Proc Natl Acad Sci U S A 109: 20449–20454. doi: 10.1073/pnas.1210983109
[38]  Prabu-Jeyabalan M, Nalivaika E, Schiffer C (2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 10: 369–381. doi: 10.1016/s0969-2126(02)00720-7
[39]  Kaplan A, Manchester M, Swanstrom R (1994) The activity of the protease of HIV-1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68: 6782–6786.
[40]  Dahirel V, Shekhar K, Pereyra F, Miura T, Artyomov M, et al. (2011) Coordinate linkage of HIV evolution reveals regions of immunological vulnerability. Proc Natl Acad Sci U S A 108: 11530–11535. doi: 10.1073/pnas.1105315108
[41]  van der Kuyl AC, Berkhout B (2012) The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 9: 92. doi: 10.1186/1742-4690-9-92
[42]  Steckbeck JD, Craigo JK, Barnes CO, Montelaro RC (2011) Highly conserved structural properties of the C-terminal tail of HIV-1 gp41 protein despite substantial sequence variation among diverse clades: implications for functions in viral replication. J Biol Chem 286: 27156–27166. doi: 10.1074/jbc.m111.258855
[43]  Richardson J (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem 34: 167–339. doi: 10.1016/s0065-3233(08)60520-3
[44]  Kozísek M, Henke S, Sasková KG, Jacobs GB, Schuch A, et al. (2012) Mutations in HIV-1 gag and pol compensate for the loss of viral fitness caused by a highly mutated protease. Antimicrob Agents Chemother 56: 4320–4330. doi: 10.1128/aac.00465-12
[45]  Rossi AH, Rocco CA, Mangano A, Sen L, Aulicino PC (2013) Sequence variability in p6 gag protein and gag/pol coevolution in human immunodeficiency type 1 subtype F genomes. AIDS Res Hum Retroviruses 29: 1056–1060. doi: 10.1089/aid.2012.0311
[46]  Yebra G, de Mulder M, del Romero J, Rodríguez C, Holguín A (2010) HIV-1 non-B subtypes: High transmitted NRTI-resistance in Spain and impaired genotypic resistance interpretation due to variability. Antiviral Research 85: 409–417. doi: 10.1016/j.antiviral.2009.11.010
[47]  Holguín A, Su?e C, Hamy F, Soriano V, Klimkait T (2006) Natural polymorphisms in the protease gene modulate the replicative capacity of non-B HIV-1 variants in the absence of drug pressure. J Clin Virol 36: 264–271. doi: 10.1016/j.jcv.2006.05.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133