全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

DOI: 10.1371/journal.pone.0088976

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM). Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML) in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE) and phosphatidylcholine (uPC), with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9–17.7 minutes) than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.

References

[1]  Bewley KD, Ellis KE, Firer-Sherwood MA, Elliott SJ (2013) Multi-heme proteins: Nature's electronic multi-purpose tool. Biochim. Biophys. Acta 1827: 938–948. doi: 10.1016/j.bbabio.2013.03.010
[2]  Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC (2006) Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol. Ther 111: 327–345. doi: 10.1016/j.pharmthera.2005.10.017
[3]  Ponka P (1999) Cell biology of haem. Am. J. Med. Sci 318: 241–256.
[4]  Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med 28: 289–309. doi: 10.1016/s0891-5849(99)00223-3
[5]  Vincent SH (1989) Oxidative effects of heme and porphyrins on proteins and lipids. Semin. Hematol 26: 105–113.
[6]  Chou AC, Fitch CD (1981) Mechanism of hemolysis induced by ferriprotoporphyrin IX. J. Clin. Invest 68: 672–677. doi: 10.1172/jci110302
[7]  Schmitt TH, Frezzatti WA Jr, Schereier S (1993) Heme-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cells lysis. Arch. Biochem. Biophys 307: 96–103. doi: 10.1006/abbi.1993.1566
[8]  Tappel AL (1955) Unsaturated lipid oxidation catalyzed by hematin compounds. J. Biol. Chem 217: 721–733.
[9]  Aft RL, Mueller GC (1983) Hemin-mediated DNA strand scission. J. Biol. Chem 258: 12069–12072.
[10]  Aft RL, Mueller GC (1984) Hemin-mediated oxidative degradation of proteins. J. Biol. Chem 259: 301–305.
[11]  Shaklai N, Shviro Y, Rabizadeh E, Kirschner-Zilber I (1985) Accumulation and drainage of hemin in the red cell membrane. Biochim. Biophys. Acta 821: 355–366. doi: 10.1016/0005-2736(85)90106-3
[12]  Ginsburg H, Demel RA (1983) The effect of ferriprotoporphyrin IX and chloroquine on phospholipid monolayers and the possible implications to antimalarial activity. Biochim. Biophys. Acta 732: 316–319. doi: 10.1016/0005-2736(83)90219-5
[13]  Light WR III, Olson JS (1990) The effects of lipid composition on the rate and extent of heme binding to membranes. J. Biol. Chem 265: 15632–15637.
[14]  Chou AC, Fitch CD (1980) Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications. J. Clin. Invest 66: 856–858. doi: 10.1172/jci109925
[15]  Oliveira PL, Kawooya JK, Ribeiro JM, Meyer T, Poorman R, et al. (1995) A heme-binding protein from hemolymph and oocytes of the blood-sucking insect, Rhodnius prolixus. Isolation and characterization. J. Biol. Chem 270: 10897–10901. doi: 10.1074/jbc.270.18.10897
[16]  Lara FA, Lins U, Paiva-Silva G, Almeida IC, Braga CM, et al. (2003) A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: aggregation inside a specialized organelle, the hemosome. J. Exp. Biol 206: 1707–1715. doi: 10.1242/jeb.00334
[17]  Stiebler R, Soares JB, Timm BL, Silva JR, Mury FB, et al. (2011) On the mechanisms involved in biological heme crystallization. J. Bioenerg. Biomembr 43: 93–99. doi: 10.1007/s10863-011-9335-x
[18]  Slater AF, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, et al. (1991) An iron–carboxylate bond links the heme units of malaria pigment. Proc. Natl. Acad. Sci. USA 88: 325–329. doi: 10.1073/pnas.88.2.325
[19]  Oliveira MF, Silva JR, Dansa-Petretski M, De Souza W, Lins U, et al. (1999) Haem detoxification by an insect. Nature 400: 517–518. doi: 10.1038/22910
[20]  Oliveira MF, Gandara ACP, Braga CMS, Silva JR, Mury FB, et al. (2007) Heme crystallization in the midgut of triatomine insects. Comp. Biochem Physiol 146: 168–174. doi: 10.1016/j.cbpc.2006.12.007
[21]  Oliveira MF, d'Avila JC, Torres CR, Oliveira PL, Tempone AJ, et al. (2000b) Haemozoin in Schistosoma mansoni. Mol. Biochem. Parasitol 111: 217–221. doi: 10.1016/s0166-6851(00)00299-1
[22]  Chen MM, Shi L, Sullivan DJ Jr (2001) Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and beta-hematin. Mol. Biochem. Parasitol 113: 1–8. doi: 10.1016/s0166-6851(00)00365-0
[23]  Pisciotta JM, Ponder EL, Fried B, Sullivan D (2005) Hemozoin formation in Echinostoma trivolvis rediae. Int. J. Parasitol 35: 1037–1042. doi: 10.1016/j.ijpara.2005.03.020
[24]  Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment β-haematin. Nature 404: 307–310. doi: 10.1038/35005132
[25]  Jani D, Nagarkatti R, Beatty W, Angel R, Slebodnick C, et al. (2008) HDP-a novel heme detoxification protein from the malaria parasite. PLoS Pathog 4: e1000053. doi: 10.1371/journal.ppat.1000053
[26]  Silva JR, Mury FB, Oliveira MF, Oliveira PL, Silva CP, et al. (2007) Perimicrovillar membranes promote hemozoin formation into Rhodnius prolixus midgut. Insect. Biochem. Mol. Biol 37: 523–531. doi: 10.1016/j.ibmb.2007.01.001
[27]  Mury FB, da Silva JR, Ferreira LS, dos Santos Ferreira B, de Souza-Filho GA, et al. (2009) α-glucosidase promotes hemozoin formation in a blood-sucking bug: an evolutionary history. PLoS ONE 4: e6966. doi: 10.1371/journal.pone.0006966
[28]  Egan TJ, Chen JYJ, de Villiers KA, Mabotha TE, Naidoo KJ, et al. (2006) Haemozoin (β-hematin) biomineralization occurs by self-assembly near the lipid-water interface. FEBS Lett 580: 5105–5110. doi: 10.1016/j.febslet.2006.08.043
[29]  Pisciotta JM, Coppens I, Tripathi AK (2007) The role of neutral lipid nanospheres in Plasmodium falciparum heme crystalization. Biochem. J 402: 197–204. doi: 10.1042/bj20060986
[30]  Stiebler R, Timm BL, Oliveira PL, Hearne GR, Egan TJ, et al. (2010a) On the physico-chemical and physiological requirements of hemozoin formation promoted by perimicrovillar membranes in Rhodnius prolixus midgut. Insect. Biochem. Mol. Biol 40: 284–92. doi: 10.1016/j.ibmb.2009.12.013
[31]  Hoang AN, Ncokazi KK, de Villiers KA, Wright DW, Egan TJ (2010a) Crystallization of synthetic haemozoin (beta-haematin) nucleated at the surface of lipid particles. Dalton Trans 39: 1235–44. doi: 10.1039/b914359a
[32]  Hoang AN, Sandlin RD, Omar A, Egan TJ, Wright DW (2010b) The neutral lipid composition present in the digestive vacuole of Plasmodium falciparum concentrates heme and mediates β-hematin formation with an unusually low activation energy. Biochemistry 49: 10107–10116. doi: 10.1021/bi101397u
[33]  Bendrat K, Berger BJ, Cerami A (1995) Haem polymerization in malaria. Nature 378: 138. doi: 10.1038/378138a0
[34]  Oliveira MF, Silva JR, Dansa-Petretski M, de Souza W, Braga CM, et al. (2000) Haemozoin formation in the midgut of the blood-sucking insect Rhodnius prolixus. FEBS Lett 477: 95–98. doi: 10.1016/s0014-5793(00)01786-5
[35]  Oliveira MF, Kycia SW, Gómez A, Kosar AJ, Bohle DS, et al. (2005) Structural and morphological characterization of hemozoin produced by Schistosoma mansoni and Rhodnius prolixus. FEBS Lett 579: 6010–6016. doi: 10.1016/j.febslet.2005.09.035
[36]  Oliveira MF, d'Avila JC, Tempone AJ, Soares JB, Rumjanek FD, et al. (2004) Inhibition of heme aggregation by chloroquine reduces Schistosoma mansoni infection. J. Infect. Dis 190: 843–852. doi: 10.1086/422759
[37]  Corrêa Soares JB, Maya-Monteiro CM, Bittencourt-Cunha PR, Atella GC, Lara FA, et al. (2007) Extracellular lipid droplets promote hemozoin crystallization in the gut of the blood fluke Schistosoma mansoni. FEBS Lett 581: 1742–1750. doi: 10.1016/j.febslet.2007.03.054
[38]  Huy NT, Shima Y, Maeda A, Men TT, Hirayama K, et al. (2013) Phospholipid membrane-mediated hemozoin formation: the effects of physical properties and evidence of membrane surrounding hemozoin. PLoS ONE 8: e70025. doi: 10.1371/journal.pone.0070025
[39]  Kapishnikov S, Weiner A, Shimoni E, Guttmann P, Schneider G, et al. (2012a) Oriented nucleation of hemozoin at the digestive vacuole membrane in Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A 109: 11188–11193. doi: 10.1073/pnas.1118120109
[40]  Huy NT, Maeda A, Uyen DT, Trang DTX, Shiono MT, et al. (2007) Alcohols induce beta-hematin formation via the dissociation of aggregated heme and reduction in interfacial tension of the solution. Acta Trop 101: 130–138. doi: 10.1016/j.actatropica.2007.01.001
[41]  Stiebler R, Hoang AN, Egan TJ, Wright DW, Oliveira MF (2010b) Increase on the initial soluble heme levels in acidic conditions is an important mechanism for spontaneous heme crystallization in vitro. PLoS ONE 5: e12694. doi: 10.1371/journal.pone.0012694
[42]  Sandlin RD, Carter MD, Lee PJ, Auschwitz JM, Leed SE, et al. (2011) Use of the NP-40 detergent-mediated assay in discovery of inhibitors of beta-hematin crystallization. Antimicrob. Agents Chemother 55: 3363–3369. doi: 10.1128/aac.00121-11
[43]  Jackson KE, Klonis N, Ferguson DJ, Adisa A, Dogovski C, et al. (2004) Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol. Microbiol 54: 109–122. doi: 10.1111/j.1365-2958.2004.04284.x
[44]  Kapishnikov S, Berthing T, Hviid L, Dierolf M, Menzel A, et al. (2012) Aligned hemozoin crystals in curved clusters in malarial red blood cells revealed by nanoprobe X-ray Fe fluorescence and diffraction. Proc. Natl. Acad. Sci U (S.A.109): 11184–11187. doi: 10.1073/pnas.1118134109
[45]  Kapishnikov S, Weiner A, Shimoni E, Schneider G, Elbaum M, et al. (2013) Membrane in Plasmodium falciparum-Infected Erythrocytes: Relevance to Templated Nucleation of Hemozoin. Langmuir 29: 14595–14602. doi: 10.1021/la402545c
[46]  de Villiers KA, Osipova M, Mabotha TE, Solomonov I, Feldman Y, et al. (2009) Oriented Nucleation of β-Hematin Crystals Induced at Various Interfaces: Relevance to Hemozoin Formation. Cryst Growth Des 9: 626–632. doi: 10.1021/cg8009755
[47]  Ambele MA, Sewell BT, Cummings FR, Smith PJ, Egan TJ (2013) Synthetic Hemozoin (β-Hematin) Crystals Nucleate at the Surface of Neutral Lipid Droplets that Control Their Sizes. Cryst. Growth Des 13: 4442–4452. doi: 10.1021/cg4009416
[48]  Dorn A, Vippagunta SR, Matile H, Bubendorf A, Vennerstrom JL, et al. (1998) A comparison and analysis of several ways to promote haematin (haem) polymerisation and an assessment of its initiation in vitro. Biochem Pharmacol 55: 737–747. doi: 10.1016/s0006-2952(97)00509-1
[49]  Gorka AP, Alumasa JN, Sherlach KS, Jacobs LM, Nickley KB, et al. (2013) Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth. Antimicrob. Agents Chemother 57: 356–364. doi: 10.1128/aac.01709-12
[50]  Lane NJ, Harrison JB (1979) An unusual cell surface modification: a double plasma membrane. J. Cell Sci 39: 355–372.
[51]  Billingsley PF, Downe AER (1983) Ultrastructural changes in posterior midgut cells associated with blood feeding in adult female Rhodnius prolixus Salt (Hemiptera, Reduviidae). Can. J. Zool 61: 2574–2486. doi: 10.1139/z83-339
[52]  Bittencourt-Cunha PR, Silva-Cardoso L, Oliveira GA, da SilvaJR, Silveira AB, et al. (2013) Perimicrovillar membrane assembly: the fate of phospholipids synthesized by the midgut of Rhodnius prolixus. Mem. Inst. Oswaldo Cruz 108: 494–500. doi: 10.1590/s0074-0276108042013016
[53]  Grillo LA, Majerowicz D, Gondim KC (2007) Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase. Insect Biochem. Mol. Biol 3: 579–588. doi: 10.1016/j.ibmb.2007.03.002
[54]  Garcia ES, Macarini JD, Garcia MLM, Ubatuba FB (1975) Feeding of Rhodnius prolixus in the laboratory. An. Acad. Bras. Cienc 47: 539–545.
[55]  Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol 37: 911–913.
[56]  Ncokazi KK, Egan TJ (2005) A colorimetric high-throughput beta-hematin inhibition screening assay for use in the search for antimalarial compounds. Anal. Biochem 338: 306–319. doi: 10.1016/j.ab.2004.11.022
[57]  Egan TJ, Tshivhase MG (2006) Kinetics of beta-haematin formation from suspensions of haematin in aqueous benzoic acid. Dalton Trans 42: 5024–5032. doi: 10.1039/b610866k
[58]  Sullivan DJ Jr, Gluzman IY, Goldberg DE (1996) Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 271: 219–221. doi: 10.1126/science.271.5246.219
[59]  Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, et al. (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. . Proc. Natl. Acad. Sci U.S.A 106: 2136–2141. doi: 10.1073/pnas.0811700106
[60]  Haimi P, Chaithanya K, Kainu V, Hermansson M, Somerharju P (2009) Instrument-independent software tools for the analysis of MS-MS and LC-MS lipidomics data. Meth. Mol. Biol 580: 285–294. doi: 10.1007/978-1-60761-325-1_16
[61]  Egan TJ, Mavuso WW, Ncokazi KK (2001) The mechanism of beta-hematin formation in acetate solution. Parallels between hemozoin formation and biomineralization processes. Biochemistry 40: 204–213. doi: 10.1021/bi0013501
[62]  Ferreira C, Ribeiro AF, Garcia ES, Terra WR (1988) Digestive enzymes trapped between and associated with the double plasma membranes of Rhodnius prolixus posterior midgut cells. Insect Biochem 18: 521–530. doi: 10.1016/0020-1790(88)90003-0
[63]  Tsui FC, Ojcius DM, Hubbell WL (1986) The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J 49: 459–468. doi: 10.1016/s0006-3495(86)83655-4
[64]  Rose MY, Thompson RA, Light WR, Olson JS (1985) Heme transfer between phospholipid membranes and uptake by apohemoglobin. J. Biol. Chem 260: 6632–6640.
[65]  Fitch CD, Cai GZ, Chen YF, Shoemaker JD (1999) Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria. Biochim. Biophys. Acta 1454: 31–37. doi: 10.1016/s0925-4439(99)00017-4
[66]  Fitch CD, Cai GZ, Shoemaker JD (2000) A role for linoleic acid in erythrocytes infected with Plasmodium berghei. Biochim. Biophys. Acta 1535: 45–49. doi: 10.1016/s0925-4439(00)00081-8
[67]  Silvius JR (1982) Thermotropic Phase Transitions of Pure Lipids in Model Membranes and Their Modifications by Membrane Proteins. In: Jost PC, Griffith OH, editors. Lipid-Protein Interactions, John Wiley & Sons, Inc., New York, pp. 239–281.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133