全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Robustness of Controllability for Networks Based on Edge-Attack

DOI: 10.1371/journal.pone.0089066

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erd?s-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components.

References

[1]  Watts DJ, Strogatz SH (1998) Collective dynamics of small-worldnetworks. nature 393: 440–442. doi: 10.1038/30918
[2]  Barabási AL, Albert R (1999) Emergence of scaling in random networks. science 286: 509–512. doi: 10.1126/science.286.5439.509
[3]  Newman M, Barabási AL, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press.
[4]  Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323: 892–895. doi: 10.1126/science.1165821
[5]  Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301: 1866–1867. doi: 10.1126/science.1089072
[6]  Wang WX, Ren J, Chen G, Wang BH (2006) Memory-based snowdrift game on networks. Physical Review E 74: 056113. doi: 10.1103/physreve.74.056113
[7]  Moreno Y, Nekovee M, Pacheco AF (2004) Dynamics of rumor spreading in complex networks. Physical Review E 69: 066130. doi: 10.1103/physreve.69.066130
[8]  Donetti L, Hurtado PI, Munoz MA (2005) Entangled networks, synchronization, and optimal network topology. Physical Review Letters 95: 188701. doi: 10.1103/physrevlett.95.188701
[9]  Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473: 167–173. doi: 10.1038/nature10011
[10]  Nepusz T, Vicsek T (2012) Controlling edge dynamics in complex networks. Nature Physics 8: 568–573. doi: 10.1038/nphys2327
[11]  Pósfai M, Liu YY, Slotine JJ, Barabási AL (2013) Effect of correlations on network controllability. Scientific reports 3.
[12]  Sorrentino F (2007) Effects of the network structural properties on its controllability. Chaos: An Interdisciplinary Journal of Nonlinear Science 17: 033101–033101. doi: 10.1063/1.2743098
[13]  Cowan NJ, Chastain EJ, Vilhena DA, Freudenberg JS, Bergstrom CT (2012) Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PloS one 7: e38398. doi: 10.1371/journal.pone.0038398
[14]  Liu YY, Slotine JJ, Barabási AL (2013) Observability of complex systems. Proceedings of the National Academy of Sciences 110: 2460–2465. doi: 10.1073/pnas.1215508110
[15]  Liu YY, Slotine JJ, Barabási AL (2012) Control centrality and hierarchical structure in complex networks. Plos one 7: e44459. doi: 10.1371/journal.pone.0044459
[16]  Yuan Z, Zhao C, Di Z,Wang WX, Lai YC (2013) Exact controllability of complex networks. Nature communications 4.
[17]  Solé RV, Rosas-Casals M, Corominas-Murtra B, Valverde S (2008) Robustness of the european power grids under intentional attack. Physical Review E 77: 026102. doi: 10.1103/physreve.77.026102
[18]  Motter AE, Lai YC (2002) Cascade-based attacks on complex networks. Physical Review E 66: 065102. doi: 10.1103/physreve.66.065102
[19]  Motter AE (2004) Cascade control and defense in complex networks. Physical Review Letters 93: 098701. doi: 10.1103/physrevlett.93.098701
[20]  Wu J, Gao Z, Sun H (2006) Cascade and breakdown in scale-free networks with community structure. Physical Review E 74: 066111. doi: 10.1103/physreve.74.066111
[21]  Holme P, Kim BJ, Yoon CN, Han SK (2002) Attack vulnerability of complex networks. Physical Review E 65: 056109. doi: 10.1103/physreve.65.056109
[22]  Iyer S, Killingback T, Sundaram B, Wang Z (2013) Attack robustness and centrality of complex networks. PloS one 8: e59613. doi: 10.1371/journal.pone.0059613
[23]  Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464: 1025–1028. doi: 10.1038/nature08932
[24]  Zheng JF, Gao ZY, Zhao XM (2007) Clustering and congestion effects on cascading failures of scale-free networks. EPL (Europhysics Letters) 79: 58002. doi: 10.1209/0295-5075/79/58002
[25]  Lai YC, Motter A, Nishikawa T, Park K, Zhao L (2005) Complex networks: Dynamics and security. Pramana 64: 483–502. doi: 10.1007/bf02706197
[26]  Yang R, Wang WX, Lai YC, Chen G (2009) Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Physical Review E 79: 026112. doi: 10.1103/physreve.79.026112
[27]  Wang WX, Chen G (2008) Universal robustness characteristic of weighted networks against cascading failure. Physical Review E 77: 026101. doi: 10.1103/physreve.77.026101
[28]  Parshani R, Buldyrev SV, Havlin S (2010) Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Physical review letters 105: 048701. doi: 10.1103/physrevlett.105.048701
[29]  Shao J, Buldyrev SV, Havlin S, Stanley HE (2011) Cascade of failures in coupled network systems with multiple support-dependence relations. Physical Review E 83: 036116. doi: 10.1103/physreve.83.036116
[30]  Huang X, Gao J, Buldyrev SV, Havlin S, Stanley HE (2011) Robustness of interdependent networks under targeted attack. Physical Review E 83: 065101. doi: 10.1103/physreve.83.065101
[31]  Yan G, Ren J, Lai YC, Lai CH, Li B (2012) Controlling complex networks: How much energy is needed? Physical Review Letters 108: 218703. doi: 10.1103/physrevlett.108.218703
[32]  Pu CL, Pei WJ, Michaelson A (2012) Robustness analysis of network controllability. Physica A: Statistical Mechanics and its Applications 391: 4420–4425. doi: 10.1016/j.physa.2012.04.019
[33]  Wang B, Gao L, Gao Y, Deng Y (2013) Maintain the structural controllability under malicious attacks on directed networks. EPL (Europhysics Letters) 101: 58003. doi: 10.1209/0295-5075/101/58003
[34]  Ruths J, Ruths D (2013) Robustness of network controllability under edge removal. In: Complex Networks IV, Springer. pp. 185–193.
[35]  Kalman RE (1963) Mathematical description of linear dynamical systems. Journal of the Society for Industrial & Applied Mathematics, Series A: Control 1: 152–192. doi: 10.1137/0301010
[36]  Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1: 2. doi: 10.1145/1217299.1217301
[37]  Martinez ND (1991) Artifacts or attributes? effects of resolution on the little rock lake food web. Ecological Monographs: 367–392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133