全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Structural Analysis of Viral Infectivity Factor of HIV Type 1 and Its Interaction with A3G, EloC and EloB

DOI: 10.1371/journal.pone.0089116

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The virion infectivity factor (Vif) is an accessory protein, which is essential for HIV replication in host cells. Vif neutralizes the antiviral host protein APOBEC3 through recruitment of the E3 ubiquitin ligase complex. Methodology Fifty thousand Vif models were generated using the ab initio relax protocol of the Rosetta algorithm from sets of three- and nine-residue fragments using the fragment Monte Carlo insertion-simulated annealing strategy, which favors protein-like features, followed by an all-atom refinement. In the protocol, a constraints archive was used to define the spatial relationship between the side chains from Cys/His residues and zinc ions that formed the zinc-finger motif that is essential for Vif function. We also performed centroids analysis and structural analysis with respect to the formation of the zinc-finger, and the residue disposal in the protein binding domains. Additionally, molecular docking was used to explore details of Vif-A3G and Vif-EloBC interactions. Furthermore, molecular dynamics simulation was used to evaluate the stability of the complexes Vif-EloBC-A3G and Vif-EloC. Principal Findings The zinc in the HCCH domain significantly alters the folding of Vif and changes the structural dynamics of the HCCH region. Ab initio modeling indicated that the Vif zinc-finger possibly displays tetrahedral geometry as suggested by Mehle et al. (2006). Our model also showed that the residues L146 and L149 of the BC-box motif bind to EloC by hydrophobic interactions, and the residue P162 of the PPLP motif is important to EloB binding. Conclusions/Significance The model presented here is the first complete three-dimensional structure of the Vif. The interaction of Vif with the A3G protein and the EloBC complex is in agreement with empirical data that is currently available in the literature and could therefore provide valuable structural information for advances in rational drug design.

References

[1]  Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9: 1404–1407. doi: 10.1038/nm945
[2]  Xiao Z, Xiong Y, Zhang W, Tan L, Ehrlich E, et al. (2007) Characterization of a novel Cullin5 binding domain in HIV-1 Vif. J Mol Biol 373: 541–550. doi: 10.1016/j.jmb.2007.07.029
[3]  Yu X, Yu Y, Liu B, Luo K, Kong W, et al. (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302: 1056–1060. doi: 10.1126/science.1089591
[4]  Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF (2004) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18: 2867–2872. doi: 10.1101/gad.1250204
[5]  Zhou X, Evans SL, Han X, Liu Y, Yu XF (2012) Characterization of the interaction of full-length HIV-1 Vif protein with its key regulator CBFbeta and CRL5 E3 ubiquitin ligase components. PLoS One 7: e33495. doi: 10.1371/journal.pone.0033495
[6]  Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, et al. (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14: 1392–1396. doi: 10.1016/j.cub.2004.06.057
[7]  Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, et al. (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99–103. doi: 10.1038/nature01709
[8]  Turelli P, Mangeat B, Jost S, Vianin S, Trono D (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303: 1829. doi: 10.1126/science.1092066
[9]  Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, et al. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113: 803–809. doi: 10.1016/s0092-8674(03)00423-9
[10]  Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR (2006) APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 34: 89–95. doi: 10.1093/nar/gkj416
[11]  Hulme AE, Bogerd HP, Cullen BR, Moran JV (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390: 199–205. doi: 10.1016/j.gene.2006.08.032
[12]  Chiu YL, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26: 317–353. doi: 10.1146/annurev.immunol.26.021607.090350
[13]  Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, et al. (2002) An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79: 285–296. doi: 10.1006/geno.2002.6718
[14]  Suspene R, Sommer P, Henry M, Ferris S, Guetard D, et al. (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32: 2421–2429. doi: 10.1093/nar/gkh554
[15]  Henriet S, Richer D, Bernacchi S, Decroly E, Vigne R, et al. (2005) Cooperative and specific binding of Vif to the 5′ region of HIV-1 genomic RNA. J Mol Biol 354: 55–72. doi: 10.1016/j.jmb.2005.09.025
[16]  Izumi T, Io K, Matsui M, Shirakawa K, Shinohara M, et al. (2010) HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively regulate viral replication. Proc Natl Acad Sci U S A 107: 20798–20803. doi: 10.1073/pnas.1008076107
[17]  Kao S, Khan MA, Miyagi E, Plishka R, Buckler-White A, et al. (2003) The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. J Virol 77: 11398–11407. doi: 10.1128/jvi.77.21.11398-11407.2003
[18]  Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, et al. (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114: 21–31. doi: 10.1016/s0092-8674(03)00515-4
[19]  Sakai K, Dimas J, Lenardo MJ (2006) The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci U S A 103: 3369–3374. doi: 10.1073/pnas.0509417103
[20]  Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12: 591–601. doi: 10.1016/s1097-2765(03)00353-8
[21]  Greene WC, Debyser Z, Ikeda Y, Freed EO, Stephens E, et al. (2008) Novel targets for HIV therapy. Antiviral Res 80: 251–265. doi: 10.1016/j.antiviral.2008.08.003
[22]  Barraud P, Paillart JC, Marquet R, Tisne C (2008) Advances in the structural understanding of Vif proteins. Curr HIV Res 6: 91–99. doi: 10.2174/157016208783885056
[23]  Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, et al. (2008) Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol 82: 8656–8663. doi: 10.1128/jvi.00767-08
[24]  Wolfe LS, Stanley BJ, Liu C, Eliason WK, Xiong Y (2010) Dissection of the HIV Vif interaction with human E3 ubiquitin ligase. J Virol 84: 7135–7139. doi: 10.1128/jvi.00031-10
[25]  Bergeron JR, Huthoff H, Veselkov DA, Beavil RL, Simpson PJ, et al. (2010) The SOCS-box of HIV-1 Vif interacts with ElonginBC by induced-folding to recruit its Cul5-containing ubiquitin ligase complex. PLoS Pathog 6: e1000925. doi: 10.1371/journal.ppat.1000925
[26]  Miller JH, Presnyak V, Smith HC (2007) The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation of APOBEC3G. Retrovirology 4: 81. doi: 10.1186/1742-4690-4-81
[27]  Yang B, Gao L, Li L, Lu Z, Fan X, et al. (2003) Potent suppression of viral infectivity by the peptides that inhibit multimerization of human immunodeficiency virus type 1 (HIV-1) Vif proteins. J Biol Chem 278: 6596–6602. doi: 10.1074/jbc.m210164200
[28]  Yang S, Sun Y, Zhang H (2001) The multimerization of human immunodeficiency virus type I Vif protein: a requirement for Vif function in the viral life cycle. J Biol Chem 276: 4889–4893. doi: 10.1074/jbc.m004895200
[29]  Mehle A, Thomas ER, Rajendran KS, Gabuzda D (2006) A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 281: 17259–17265. doi: 10.1074/jbc.m602413200
[30]  Xiao Z, Ehrlich E, Yu Y, Luo K, Wang T, et al. (2006) Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349: 290–299. doi: 10.1016/j.virol.2006.02.002
[31]  Paul I, Cui J, Maynard EL (2006) Zinc binding to the HCCH motif of HIV-1 virion infectivity factor induces a conformational change that mediates protein-protein interactions. Proc Natl Acad Sci U S A 103: 18475–18480. doi: 10.1073/pnas.0604150103
[32]  He Z, Zhang W, Chen G, Xu R, Yu XF (2008) Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. J Mol Biol 381: 1000–1011. doi: 10.1016/j.jmb.2008.06.061
[33]  Huthoff H, Malim MH (2005) Cytidine deamination and resistance to retroviral infection: towards a structural understanding of the APOBEC proteins. Virology 334: 147–153. doi: 10.1016/j.virol.2005.01.038
[34]  Schrofelbauer B, Senger T, Manning G, Landau NR (2006) Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J Virol 80: 5984–5991. doi: 10.1128/jvi.00388-06
[35]  Yamashita T, Kamada K, Hatcho K, Adachi A, Nomaguchi M (2008) Identification of amino acid residues in HIV-1 Vif critical for binding and exclusion of APOBEC3G/F. Microbes Infect 10: 1142–1149. doi: 10.1016/j.micinf.2008.06.003
[36]  Russell RA, Pathak VK (2007) Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 81: 8201–8210. doi: 10.1128/jvi.00395-07
[37]  Chen G, He Z, Wang T, Xu R, Yu XF (2009) A patch of positively charged amino acids surrounding the human immunodeficiency virus type 1 Vif SLVx4Yx9Y motif influences its interaction with APOBEC3G. J Virol 83: 8674–8682. doi: 10.1128/jvi.00653-09
[38]  Dang Y, Wang X, Zhou T, York IA, Zheng YH (2009) Identification of a novel WxSLVK motif in the N terminus of human immunodeficiency virus and simian immunodeficiency virus Vif that is critical for APOBEC3G and APOBEC3F neutralization. J Virol 83: 8544–8552. doi: 10.1128/jvi.00651-09
[39]  Pery E, Rajendran KS, Brazier AJ, Gabuzda D (2009) Regulation of APOBEC3 proteins by a novel YXXL motif in human immunodeficiency virus type 1 Vif and simian immunodeficiency virus SIVagm Vif. J Virol 83: 2374–2381. doi: 10.1128/jvi.01898-08
[40]  Tian C, Yu X, Zhang W, Wang T, Xu R, et al. (2006) Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J Virol 80: 3112–3115. doi: 10.1128/jvi.80.6.3112-3115.2006
[41]  Marcsisin SR, Narute PS, Emert-Sedlak LA, Kloczewiak M, Smithgall TE, et al. (2011) On the solution conformation and dynamics of the HIV-1 viral infectivity factor. J Mol Biol 410: 1008–1022. doi: 10.1016/j.jmb.2011.04.053
[42]  Bizinoto MC, Yabe S, Leal E, Kishino H, Martins L de O, et al. (2013) Codon pairs of the HIV-1 vif gene correlate with CD4+ T cell count. BMC Infect Dis 13: 173. doi: 10.1186/1471-2334-13-173
[43]  Thippeshappa R, Polacino P, Yu Kimata MT, Siwak EB, Anderson D, et al. (2011) Vif substitution enables persistent infection of pig-tailed macaques by human immunodeficiency virus type 1. J Virol 85: 3767–3779. doi: 10.1128/jvi.02438-10
[44]  Wang X, Zhang H, Lv M, Zuo T, Wu H, et al. (2013) Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-beta binding to Vif. Retrovirology 10: 94. doi: 10.1186/1742-4690-10-94
[45]  de Alencar NA, Sousa PR, Silva JR, Lameira J, Alves CN, et al. (2012) Computational analysis of human OGA structure in complex with PUGNAc and NAG-thiazoline derivatives. J Chem Inf Model 52: 2775–2783. doi: 10.1021/ci2006005
[46]  Lima AH, Souza PR, Alencar N, Lameira J, Govender T, et al. (2012) Molecular modeling of T. rangeli, T. brucei gambiense, and T. evansi sialidases in complex with the DANA inhibitor. Chem Biol Drug Des 80: 114–120. doi: 10.1111/j.1747-0285.2012.01380.x
[47]  Moraes G, Azevedo V, Costa M, Miyoshi A, Silva A, et al. (2011) Homology modeling, molecular dynamics and QM/MM study of the regulatory protein PhoP from Corynebacterium pseudotuberculosis. J Mol Model 18: 1219–1227. doi: 10.1007/s00894-011-1145-x
[48]  Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.
[49]  Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174. doi: 10.1007/bf02101694
[50]  Guindon S, Delsuc F, Dufayard JF, Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537: 113–137. doi: 10.1007/978-1-59745-251-9_6
[51]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
[52]  Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77: 363–382. doi: 10.1146/annurev.biochem.77.062906.171838
[53]  Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383: 66–93. doi: 10.1016/s0076-6879(04)83004-0
[54]  Wang C, Vernon R, Lange O, Tyka M, Baker D (2010) Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Protein Sci 19: 494–506. doi: 10.1002/pro.327
[55]  Tsai J, Bonneau R, Morozov AV, Kuhlman B, Rohl CA, et al. (2003) An improved protein decoy set for testing energy functions for protein structure prediction. Proteins 53: 76–87. doi: 10.1002/prot.10454
[56]  Sali A (1995) Comparative protein modeling by satisfaction of spatial restraints. Mol Med Today 1: 270–277. doi: 10.1016/s1357-4310(95)91170-7
[57]  Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101: 2525–2534. doi: 10.1016/j.bpj.2011.10.024
[58]  Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, et al. (2008) Molecular dynamics-solvated interaction energy studies of protein-protein interactions: the MP1-p14 scaffolding complex. J Mol Biol 379: 787–802. doi: 10.1016/j.jmb.2008.04.035
[59]  Naim M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, et al. (2007) Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model 47: 122–133. doi: 10.1021/ci600406v
[60]  Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668–1688. doi: 10.1002/jcc.20290
[61]  Pang YP (2001) Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins 45: 183–189. doi: 10.1002/prot.1138
[62]  Pang YP, Xu K, Yazal JE, Prendergas FG (2000) Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Protein Sci 9: 1857–1865.
[63]  Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8: 477–486. doi: 10.1007/bf00228148
[64]  Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277: 1141–1152. doi: 10.1006/jmbi.1998.1665
[65]  Benkert P, Schwede T, Tosatto SC (2009) QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC Struct Biol 9: 35. doi: 10.1186/1472-6807-9-35
[66]  Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201. doi: 10.1093/bioinformatics/bti770
[67]  Schr?dinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.5.0.4. Available: http://www.pymol.org.
[68]  Balaji S, Kalpana R, Shapshak P (2006) Paradigm development: comparative and predictive 3D modeling of HIV-1 Virion Infectivity Factor (Vif). Bioinformation 1: 290–309. doi: 10.6026/97320630001290
[69]  Lv W, Liu Z, Jin H, Yu X, Zhang L (2007) Three-dimensional structure of HIV-1 VIF constructed by comparative modeling and the function characterization analyzed by molecular dynamics simulation. Org Biomol Chem 5: 617–626. doi: 10.1039/b612050d
[70]  Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31: 532–550. doi: 10.1093/nar/gkg161
[71]  Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14: 271–313. doi: 10.1007/978-94-017-3728-9_6
[72]  Patel K, Kumar A, Durani S (2007) Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures. Biochim Biophys Acta 1774: 1247–1253. doi: 10.1016/j.bbapap.2007.07.010
[73]  Giri K, Maynard EL (2009) Conformational analysis of a peptide approximating the HCCH motif in HIV-1 Vif. Biopolymers 92: 417–425. doi: 10.1002/bip.21209
[74]  Auclair JR, Green KM, Shandilya S, Evans JE, Somasundaran M, et al. (2007) Mass spectrometry analysis of HIV-1 Vif reveals an increase in ordered structure upon oligomerization in regions necessary for viral infectivity. Proteins 69: 270–284. doi: 10.1002/prot.21471
[75]  Yang X, Gabuzda D (1998) Mitogen-activated protein kinase phosphorylates and regulates the HIV-1 Vif protein. J Biol Chem 273: 29879–29887. doi: 10.1074/jbc.273.45.29879
[76]  Yang X, Goncalves J, Gabuzda D (1996) Phosphorylation of Vif and its role in HIV-1 replication. J Biol Chem 271: 10121–10129. doi: 10.1074/jbc.271.17.10121
[77]  Kopietz F, Jaguva Vasudevan AA, Kramer M, Muckenfuss H, Sanzenbacher R, et al. (2012) Interaction of human immunodeficiency virus type 1 Vif with APOBEC3G is not dependent on serine/threonine phosphorylation status. J Gen Virol 93: 2425–2430. doi: 10.1099/vir.0.043273-0
[78]  Lu Z, Bergeron JR, Atkinson RA, Schaller T, Veselkov DA, et al. (2013) Insight into the HIV-1 Vif SOCS-box-ElonginBC interaction. Open Biol 3: 130100. doi: 10.1098/rsob.130100
[79]  Reingewertz TH, Benyamini H, Lebendiker M, Shalev DE, Friedler A (2009) The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Protein Eng Des Sel 22: 281–287. doi: 10.1093/protein/gzp004
[80]  Yuan Z, Bailey TL, Teasdale RD (2005) Prediction of protein B-factor profiles. Proteins 58: 905–912. doi: 10.1002/prot.20375
[81]  Bouyac M, Courcoul M, Bertoia G, Baudat Y, Gabuzda D, et al. (1997) Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. J Virol 71: 9358–9365.
[82]  Dettenhofer M, Cen S, Carlson BA, Kleiman L, Yu XF (2000) Association of human immunodeficiency virus type 1 Vif with RNA and its role in reverse transcription. J Virol 74: 8938–8945. doi: 10.1128/jvi.74.19.8938-8945.2000
[83]  Khan MA, Aberham C, Kao S, Akari H, Gorelick R, et al. (2001) Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J Virol 75: 7252–7265. doi: 10.1128/jvi.75.16.7252-7265.2001
[84]  Zhang H, Pomerantz RJ, Dornadula G, Sun Y (2000) Human immunodeficiency virus type 1 Vif protein is an integral component of an mRNP complex of viral RNA and could be involved in the viral RNA folding and packaging process. J Virol 74: 8252–8261. doi: 10.1128/jvi.74.18.8252-8261.2000
[85]  Henriet S, Sinck L, Bec G, Gorelick RJ, Marquet R, et al. (2007) Vif is a RNA chaperone that could temporally regulate RNA dimerization and the early steps of HIV-1 reverse transcription. Nucleic Acids Res 35: 5141–5153. doi: 10.1093/nar/gkm542
[86]  Cancio R, Spadari S, Maga G (2004) Vif is an auxiliary factor of the HIV-1 reverse transcriptase and facilitates abasic site bypass. Biochem J 383: 475–482. doi: 10.1042/bj20040914
[87]  Wissing S, Galloway NL, Greene WC (2010) HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Aspects Med 31: 383–397. doi: 10.1016/j.mam.2010.06.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133