全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Diurnal and Seasonal Change in Stem Respiration of Larix principis-rupprechtii Trees, Northern China

DOI: 10.1371/journal.pone.0089294

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stem respiration is a critical and uncertain component of ecosystem carbon cycle. Few studies reported diurnal change in stem respiration as well as its linkage with climate. In this study, we investigated the diurnal and seasonal change in stem respiration and its linkage with environmental factors, in larch plantations of northern China from 2010 to 2012. The stem respiration per unit surface area (RS) showed clear diurnal cycles, ranging from 1.65±0.10 to 2.69±0.15 μmol m?2 s?1, increased after 6:00, peaked at 15:00 and then decreased. Both stem temperature and air temperature show similar diurnal pattern, while the diurnal pattern of air relative humidity is just the opposite to Rs. Similar to the diurnal cycles, seasonal change in RS followed the pattern of stem temperature. RS increased from May (1.28±0.07 μmol m?2 s?1) when the stem temperature was relatively low and peaked in July (3.02±0.10 μmol m?2 s?1) when the stem temperature was also the highest. Further regression analyses show that RS exponentially increases with increasing temperature, and the Q10 of Rs at mid daytime (1.97±0.17 at 12:00 and 1.96±0.10 at 15:00) is significantly lower than that of mid nighttime (2.60±0.14 at 00:00 and 2.71±0.25 at 03:00) Q10. This result not only implies that Rs is more sensitive to night than day warming, but also highlights that temperature responses of Rs estimated by only daytime measurement can lead to underestimated stem respiration increase under global warming, especially considering that temperature increase is faster during nighttime.

References

[1]  IPCC, 2007 Climate Change (2007) The Physical Sciences Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 235–337.
[2]  Pan Y, Birdsey RA, Fang JY, Houghton R, Kauppi PE, et al. (2011) A Large and Persistent Carbon Sink in the World’s Forests. Science 988: 988–993. doi: 10.1126/science.1201609
[3]  Janssens IA, Kim P (2003) Large seasonal changes in Q10 of soil respiration in a beech. Global Change Biol 9: 911–918. doi: 10.1046/j.1365-2486.2003.00636.x
[4]  Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol 12: 154–164. doi: 10.1111/j.1365-2486.2005.01065.x
[5]  Peng SS, Piao SL, Wang T, Sun JY, Shen ZH (2009) Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol Biochem 41: 1008–1014. doi: 10.1016/j.soilbio.2008.10.023
[6]  Paembonan SA, Hagihara A, Hozumi K (1991) Long-term measurement of CO2 release from the aboveground parts of a hinoki forest tree in relation to air temperature. Tree Physiol 8: 399–405. doi: 10.1093/treephys/8.4.399
[7]  Brito P, Soledad M, Morales D, Wieser G (2013) Assessment of ecosystem CO2 efflux and its components in a Pinus canariensis forest at the treeline. Soil Biol Biochem 27: 999–1009. doi: 10.1007/s00468-013-0851-7
[8]  Acosta M, Pavelka M, Pokorny R, Janou? D, Marek MV (2008) Seasonal variation in CO2 efflux of stems and branches of Norway spruce trees. Ann Bot 101: 469–477.
[9]  Zha TS, Kellomaki S, Wang K, Aija R, Sini N (2004) Seasonal and Annual Stem Respiration of Scots Pine Trees under Boreal Conditions. Ann Bot 94: 889–896.
[10]  Maseyk K, Grunzweig JM, Rotenmerg E, Yakir D (2008) Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. Global Change Biol 14: 1553–1567. doi: 10.1111/j.1365-2486.2008.01604.x
[11]  Cavaleri MA, Oberbauer SF, Ryan MG (2008) Foliar and ecosystem respiration in an old-growth tropical rain forest. Plant Cell Environ 31: 473–483. doi: 10.1111/j.1365-3040.2008.01775.x
[12]  Wang M, Guan DX, Han SJ, Wu JL (2010) Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest. Tree Physiol 30: 149–63. doi: 10.1093/treephys/tpp098
[13]  Cerasoli S, Mcguire MA, Faria J, Mourato M, Schmidt M, et al. (2009) CO2 efflux, CO2 concentration and photosynthetic refixation in stems of Eucalyptus globulus (Labill.). J Exp Bot 60: 99–105. doi: 10.1093/jxb/ern272
[14]  Ryan MG (1991) Effects of Climate Change on Plant Respiration. Ecol Soc Amer 1: 157–167. doi: 10.2307/1941808
[15]  Ryan MG, Hubbard RM, Clark DA, Sanford JRL (1994) Woody-Tissue Respiration for Simarouba amara and Minquartia guianensis, Two Tropical Wet Forest Trees with Different Growth Habits. Oecologia 100: 213–220. doi: 10.1007/bf00316947
[16]  Ryan MG, Cavaleri MA, Almeida AC, Penchel R, Senock RS, et al. (2009) Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil. Tree Physiol 29: 1213–1222. doi: 10.1093/treephys/tpp059
[17]  Yang JY, Teskey RO, Wang CK (2012) Stem CO2 efflux of ten species in temperate forests in Northeastern China. Trees 26: 1225–1235. doi: 10.1007/s00468-012-0698-3
[18]  Lavigne MB (1996) Comparing stem respiration and growth of jack pine provenances from northern and southern locations. Tree Physiol 16: 847–852. doi: 10.1093/treephys/16.10.847
[19]  H?ltt? T, Kolari P (2009) Interpretation of stem CO2 efflux measurements. Tree Physiol 29: 1447–1456. doi: 10.1093/treephys/tpp073
[20]  Moore DJ, Gonzalez-Meler MA, Taneva L, Pippen JS, Kim HS, et al. (2008) The effect of carbon dioxide enrichment on apparent stem respiration from Pinustaeda L. is confounded by high levels of soil carbon dioxide. Oecologia 158: 1–10. doi: 10.1007/s00442-008-1118-7
[21]  Acosta M, Pokorny R, Janou? D, Marek M (2010) Stem respiration of Norway spruce trees under elevated CO2 concentration. Biologia Plantarum 54: 773–776. doi: 10.1007/s10535-010-0140-x
[22]  Maier CA, Zarnoch SJ, Dougherty PM (1998) Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiol 18: 11–20. doi: 10.1093/treephys/18.1.11
[23]  Zhu LW, Zhao P, Ni GY, Cao QP, Zhou CM, et al. (2012) Individual- and stand-level stem CO2 efflux in a subtropical Schima superba plantation. Biogeosciences 9: 3729–3737. doi: 10.5194/bg-9-3729-2012
[24]  Bowman WP, Turnbull MH, Tissue DT, Whitehead D, Griffin KL (2008) Sapwood temperature gradients between lower stems and the crown do not influence estimates of stand-level stem CO2 efflux. Tree Physiol 28: 1553–1559. doi: 10.1093/treephys/28.10.1553
[25]  Stockfors J (2000) Temperature variations and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up. Tree Physiol 20: 1057–1062. doi: 10.1093/treephys/20.15.1057
[26]  Damesin C, Ceschial E, Goff NL, Ottorini J, Dufrenel E (2012) Stem and branch respiration estimations of at beech: the from stand level tree measurements to estimations at the stand level. New Phytologist 153: 159–172. doi: 10.1046/j.0028-646x.2001.00296.x
[27]  Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–187.
[28]  Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, et al. (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison. J Climate 19: 3337–3353. doi: 10.1175/jcli3800.1
[29]  McGuire MA, Cerasoli S, Teskey RO (2007) CO2 fluxes and respiration of branch segments of sycamore (Platanusoccidentalis L.) examined at different sap velocities, branch diameters, and temperatures. J Exp Bot 58: 2159–2168. doi: 10.1093/jxb/erm069
[30]  Kim MH, Nakane K, Lee JT, Bang HS, Na YE (2007) Stem/branch maintenance respiration of Japanese red pine stand. Forest Ecol Manage 243: 283–290. doi: 10.1016/j.foreco.2007.03.017
[31]  Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz LH, et al. (1995) Woody Tissue Maintenance Respiration of Four Conifers in Contrasting Climates. Oecologia 101: 133–140. doi: 10.1007/bf00317276
[32]  Acosta M, Pavelka M, Tomá?ková I, Janous D (2011) Branch CO2 efflux in vertical profile of Norway spruce tree. Eur J Forest Res 130: 649–656. doi: 10.1007/s10342-010-0456-2
[33]  Liberloo M, Angelis PD, Ceulemans R (2008) Stem CO2 efflux of a Populus nigra stand: effects of elevated CO2, fertilization, and shoot size. Biologia Plantarum 52: 299–306. doi: 10.1007/s10535-008-0063-y
[34]  Stockfors JAN, Linder S (1998) Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiol 18: 155–166. doi: 10.1093/treephys/18.3.155
[35]  Saveyn A, Steppe K, McGuire AM, Lemeur R, Teskey RO (2008) Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia 154: 637–649. doi: 10.1007/s00442-007-0868-y
[36]  Gruber A, Wieser G, Oberhuber W (2009) Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra. Tree Physiol 29: 641–649. doi: 10.1093/treephys/tpp001
[37]  Lavigne MB, Ryan MG (1997) Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiol 17: 543–552. doi: 10.1093/treephys/17.8-9.543
[38]  Lavigne MB, Little CHA, Riding RT (2004) Changes in stem respiration rate during cambial reactivation can be used to refine estimates of growth and maintenance respiration. New Phytologist 162: 81–93. doi: 10.1111/j.1469-8137.2004.01004.x
[39]  Wittmann C, Pfanz H (2007) Temperature dependency of bark photosynthesis in beech (Fagussylvatica L.) and birch (Betulapendula Roth.) trees. J Exp Bot 58: 4293–4306. doi: 10.1093/jxb/erm313
[40]  Ma YC, Zhu B, Sun ZZ, Zhao C, Yang Y, et al.. (2013) The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch. J Plant Ecol doi:10.1093/jpe/rtt028. 1–10.
[41]  Ma YC, Piao SL, Sun ZZ, Lin X, Wang T (2014) Stand ages regulate the response of soil respiration to temperature in a Larix principis-rupprechtii plantation. Agricult Forest Meteorol 184: 179–187. doi: 10.1016/j.agrformet.2013.10.008
[42]  Xu M, Debiase TA, Qi Y (2000) A simple technique to measure stem respiration using a horizontally oriented soil chamber. Can J Forest Res 30: 1555–1560. doi: 10.1139/x00-083
[43]  Wang WJ, Yang FJ, Zu YG, Wang HM, Takagik K, et al. (2003) Stem respiration of a Larch (Larix gmelini) plantation in Northest China. Acta Botanica Sinica 45: 1387–1397.
[44]  Boone RD, Nadelhoffer KJ, Canary JD (1998) Roots exert strong influence on the temperature sensitivity of soil respiration. Nature 396: 570–572. doi: 10.1038/25119
[45]  Bolstad PV, Davis KJ, Martin J, Cook BD, Wang W (2004) Component and whole-system respiration fluxes in northern deciduous forests. Tree Physiol 24: 493–504. doi: 10.1093/treephys/24.5.493
[46]  Clinton BD, Maier CA, Ford CR, Mitchell RJ (2011) Transient changes in transpiration and stem and soil CO2 efflux in longleaf pine (Pinus palustris Mill.) following fire-induced leaf area reduction. Trees 25: 997–1007. doi: 10.1007/s00468-011-0574-6
[47]  Levy PE, Jarvis PG (1998) Stem CO2 fluxes in two Sahelian shrub species (Guiera senegalensis and Combretum micranthum). Funct Ecol 12: 107–116. doi: 10.1046/j.1365-2435.1998.00156.x
[48]  Ryan MG, Hubbard RM, Pongracic S, Raison RJ, Mcmurtrie RE (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol 16: 333–343. doi: 10.1093/treephys/16.3.333
[49]  Vose JM, Ryan MG (2002) Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biol 8: 182–193. doi: 10.1046/j.1365-2486.2002.00464.x
[50]  Martin TA, Teskey R, Dougherty PM (1994) Movement of respiratory CO2 in stems of loblolly pine (Pinus taeda L.) seedlings. Tree Physiol 14: 481–495. doi: 10.1093/treephys/14.5.481
[51]  Azcon-bieto J, Lambers H, Day DA (1983) Effect of Photosynthesis and Carbohydrate Status on Respiratory Rates and the Involvement of the Alternative Pathway in Leaf Respiration. Plant Physiol 72: 598–603. doi: 10.1104/pp.72.3.598
[52]  Piao SL, Luyssaert S, Ciais P, Janssens IA, Chen AP, et al. (2010) Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91: 652–661. doi: 10.1890/08-2176.1
[53]  Amthor JS (1989) Respiration and crop productivity. Springer-Verlag New York. 215 p.
[54]  Penning de Vries FWT, Brunsting AHM, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45: 339–377. doi: 10.1016/0022-5193(74)90119-2
[55]  Ryan MG (1991) Effects of Climate Change on Plant Respiration. Ecol Appl 1: 157–167. doi: 10.2307/1941808
[56]  Carey EV, Callaway RM, Deluci EH (1997) Stem respiration of ponderosa pines grown in contrasting climates: implications for global climate change. Oecologia 111: 19–25. doi: 10.1007/s004420050203
[57]  Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Global Change Biol 7: 223–230. doi: 10.1046/j.1365-2486.2001.00397.x
[58]  King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312: 536–537. doi: 10.1126/science.1114166
[59]  Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173. doi: 10.1038/nature04514
[60]  Peters J, Morales D, Jimenez MS (2003) Gas exchange characteristics of Pinus canariensis needles in a forest stand on Tenerife, Canary Islands. Trees 17: 492–500. doi: 10.1007/s00468-003-0261-3
[61]  Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, et al. (1993) Global climate change and terrestrial net primary production. Nature 363: 234–240. doi: 10.1038/363234a0
[62]  Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation changes and nocturnal global warming. Science 283: 229–231. doi: 10.1126/science.283.5399.229
[63]  Gou XH, Chen FH, Yang MX, Gordon J, Fang KY, et al. (2008) Asymmetric variability between maximum and minimum temperature in Northestern Tibetan Plateau: Evidence from tree rings. SCIENCE CHINA Earth Sciences 51: 41–55. doi: 10.1007/s11430-007-0154-1
[64]  Wan SQ, Xia JY, Liu WX, Niu SL (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90: 2700–2710. doi: 10.1890/08-2026.1
[65]  Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, et al. (2013) Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501: 88–94. doi: 10.1038/nature12434

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133