Determination of Acceptor Concentration, Depletion Width, Donor Level Movement and Sensitivity Factor of ZnO on Diamond Heterojunction under UV Illumination
The concentration of acceptor carriers, depletion width, magnitude of donor level movement as well as the sensitivity factor are determined from the UV response of a heterojunction consisting of ZnO on type IIb diamond. From the comparison of the I-V measurements in dark condition and under UV illumination we show that the acceptor concentration (~1017 cm?3) can be estimated from p-n junction properties. The depletion width of the heterojunction is calculated and is shown to extend farther into the ZnO region in dark condition. Under UV illumination, the depletion width shrinks but penetrates both materials equally. The ultraviolet illumination causes the donor level to move closer to the conduction band by about 50 meV suggesting that band bending is reduced to allow more electrons to flow from the intrinsically n-type ZnO. The sensitivity factor of the device calculated from the change of threshold voltages, the ratio of dark and photocurrents and identity factor is consistent with experimental data.
References
[1]
Kim J, Yun JH, Kim CH, Park YC, Woo JY, et al. (2010) ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect. Nanotechnology 21: 115205. doi: 10.1088/0957-4484/21/11/115205
[2]
Liang S, Sheng H, Liu Y, Huo Z, Lu Y, et al. (2001) ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225: 110–113. doi: 10.1016/s0022-0248(01)00830-2
[3]
Endo H, Sugibuchi M, Takahashi K, Goto S, Sugimura S, et al. (2007) Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate. Appl. Phys. Lett. 90: 121906. doi: 10.1063/1.2715100
[4]
Mandalapu LJ, Yang Z, Xiu FX, Zhao DT, Liu JL (2006) Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection. Appl. Phys. Lett. 88: 092103. doi: 10.1063/1.2178470
[5]
Ohta H, Kamiya M, Kamiya T, Hirano M, Hosono H (2003) UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiOyn-ZnO Thin Solid Films. 445: 317–321. doi: 10.1016/s0040-6090(03)01178-7
[6]
Huong NT, Tuyen NV, Hong NH (2011) Structural properties of P-doped ZnO. Mater. Chem. Phys. 126: 54–57. doi: 10.1016/j.matchemphys.2010.12.012
[7]
Wan Q (2006) Structural and magnetic properties of manganese and phosphorus codoped ZnO films on (0001) sapphire substrates. Appl. Phys. Lett. 89: 082515. doi: 10.1063/1.2338660
[8]
Barnes TM, Olson K, Wolden CA (2005) On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett. 86: 112112. doi: 10.1063/1.1884747
[9]
Kohn E, Denisenko A (2007) Concepts for diamond electronics. Thin Solid Films 515: 4333–4339. doi: 10.1016/j.tsf.2006.07.179
[10]
Thonke K (2003) The boron acceptor in diamond. Semicond. Sci. Technol. 18: S20–S26. doi: 10.1088/0268-1242/18/3/303
[11]
Hikavyy A, Clauws P, Vanbesien K, De Visschere P, Williams OA, et al. (2007) Atomic layer deposition of ZnO thin films on boron-doped nanocrystalline diamond. Diamond and Relat. Mater. 16: 983–986. doi: 10.1016/j.diamond.2006.11.035
[12]
Wang CX, Yang GW, Gao CX, Liu HW, Han YH, et al. (2004) Highly oriented growth of n-type ZnO films on p-type single crystalline diamond films and fabrication of high quality transparent ZnO/diamond heterojunction. Carbon 42: 317–321. doi: 10.1016/j.carbon.2003.10.038
[13]
Sang DD, Li HD, Cheng SH, Wang QL, Yu Q, et al. (2012) Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at higher temperatures. J. Appl. Phys. 112: 036101. doi: 10.1063/1.4745039
[14]
Huang J, Wang LJ, Tang K, Zhang JJ, Xia YB, et al. (2012) The fabrication and photoresponse of ZnO/diamond film heterojunction diode. Appl. Surf. Sci. 258: 2010–2013. doi: 10.1016/j.apsusc.2011.05.027
[15]
Saw KG, Tneh SS, Yam FK, Ng SS, Hassan Z (2010) Ultraviolet photoresponse properties of zinc oxide on type IIb diamond heterojunction. Physica B 405: 4123–4127. doi: 10.1016/j.physb.2010.06.064
[16]
Mega T, Morimoto R, Morita M, Shimomura J (1996) Auger electron spectroscopy of boron nitride in hot-rolled graphitized steel sheet. Surf. Interface Anal. 24: 375–379. doi: 10.1002/(sici)1096-9918(199606)24:6<375::aid-sia127>3.0.co;2-t
[17]
Ager JW, Walukiewicz W, McCluskey M, Plano MA, Landstrass MI (1995) Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 66: 616–618. doi: 10.1063/1.114031
[18]
Fedison JB, Chow TP, Lu H, Bhat IB (1998) Electrical characteristics of magnesium-doped gallium nitride junction diodes. Appl. Phys. Lett. 72: 2841–2843. doi: 10.1063/1.121475
[19]
Ye JD, Gu SL, Zhu SM, Liu W, Liu SM, et al. (2006) Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions. Appl. Phys. Lett. 88: 182112. doi: 10.1063/1.2201895
[20]
Luo L, Zhang Y, Mao SS, Lin L (2006) Fabrication and characterization of ZnO nanowires based UV photodiodes. Sensors and Actuators A 127: 201–206. doi: 10.1016/j.sna.2005.06.023
[21]
Nebel CE (2005) Surface transfer-doping of H-terminated diamond with adsorbates. New Diam. Front. C. Tec. 15: 247–264.
[22]
Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, et al. (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7: 1003–1009. doi: 10.1021/nl070111x
[23]
Li QH, Gao T, Wang YG, Wang TH (2005) Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 86: 123117. doi: 10.1063/1.1883711