全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Molecular Recognition in Complexes of TRF Proteins with Telomeric DNA

DOI: 10.1371/journal.pone.0089460

Full-Text   Cite this paper   Add to My Lib

Abstract:

Telomeres are specialized nucleoprotein assemblies that protect the ends of linear chromosomes. In humans and many other species, telomeres consist of tandem TTAGGG repeats bound by a protein complex known as shelterin that remodels telomeric DNA into a protective loop structure and regulates telomere homeostasis. Shelterin recognizes telomeric repeats through its two major components known as Telomere Repeat-Binding Factors, TRF1 and TRF2. These two homologous proteins are therefore essential for the formation and normal function of telomeres. Indeed, TRF1 and TRF2 are implicated in a plethora of different cellular functions and their depletion leads to telomere dysfunction with chromosomal fusions, followed by apoptotic cell death. More specifically, it was found that TRF1 acts as a negative regulator of telomere length, and TRF2 is involved in stabilizing the loop structure. Consequently, these proteins are of great interest, not only because of their key role in telomere maintenance and stability, but also as potential drug targets. In the current study, we investigated the molecular basis of telomeric sequence recognition by TRF1 and TRF2 and their DNA binding mechanism. We used molecular dynamics (MD) to calculate the free energy profiles for binding of TRFs to telomeric DNA. We found that the predicted binding free energies were in good agreement with experimental data. Further, different molecular determinants of binding, such as binding enthalpies and entropies, the hydrogen bonding pattern and changes in surface area, were analyzed to decompose and examine the overall binding free energies at the structural level. With this approach, we were able to draw conclusions regarding the consecutive stages of sequence-specific association, and propose a novel aspartate-dependent mechanism of sequence recognition. Finally, our work demonstrates the applicability of computational MD-based methods to studying protein-DNA interactions.

References

[1]  Henderson ER, Blackburn EH (1989) An overhanging 3′ terminus is a conserved feature of telom-eres. Mol Cell Biol 9: 345–348.
[2]  Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514. doi: 10.1016/s0092-8674(00)80760-6
[3]  de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5: 323–329. doi: 10.1038/nrm1359
[4]  de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–2110. doi: 10.1101/gad.1346005
[5]  Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21: 564–579. doi: 10.1038/sj.onc.1205083
[6]  Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448: 1068–1071. doi: 10.1038/nature06065
[7]  Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336: 593–597. doi: 10.1126/science.1218498
[8]  Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 12: 1635–1644. doi: 10.1016/s0960-9822(02)01179-x
[9]  Karlseder J, Broccoli D, Dai YM, Hardy S, de Lange T (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283: 1321–1325. doi: 10.1126/science.283.5406.1321
[10]  Neidle S, Parkinson G (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1: 383–393. doi: 10.1038/nrd793
[11]  Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311: 1257. doi: 10.1126/science.1122446
[12]  Zhong Z, Shiue L, Kaplan S, de Lange T (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12: 4834–4843.
[13]  Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17: 231–235. doi: 10.1038/ng1097-231
[14]  Karlseder J (2003) Telomere repeat binding factors: keeping the ends in check. Cancer Lett 194: 189–197. doi: 10.1016/s0304-3835(02)00706-1
[15]  van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385: 740–743. doi: 10.1038/385740a0
[16]  Muftuoglu M, Wong HK, Imam SZ, Wilson DM, Bohr VA, et al. (2006) Telomere repeat bind-ing factor 2 interacts with base excision repair proteins and stimulates DNA synthesis by DNA polymerase beta. Cancer Res 66: 113–124. doi: 10.1158/0008-5472.can-05-2742
[17]  Nishikawa T, Okamura H, Nagadoi A, Knig P, Rhodes D, et al. (2001) Solution structure of a telomeric DNA complex of human TRF1. Structure 9: 1237–1251. doi: 10.1016/s0969-2126(01)00688-8
[18]  Hanaoka S, Nagadoi A, Nishimura Y (2005) Comparison between TRF2 and TRF1 of their telom-eric DNA-bound structures and DNA-binding activities. Protein Sci 14: 119–130. doi: 10.1110/ps.04983705
[19]  Court R, Chapman L, Fairall L, Rhodes D (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 6: 39–45. doi: 10.1038/sj.embor.7400314
[20]  Lemke K, Wojciechowski M, Laine W, Bailly C, Colson P, et al. (2005) Induction of unique struc-tural changes in guanine-rich DNA regions by the triazoloacridone C-1305, a topoisomerase ii inhibitor with antitumor activities. Nucleic Acids Res 33: 6034–6047. doi: 10.1093/nar/gki904
[21]  Bidzinska J, Olewniak J, Skladanowski A (2009) Conference poster: Compound C-1305 binds to telomeric DNA and prevents its interactions with TRF1/2 proteins. Acta Bioch Pol 56, Supp. 3: p. 27.
[22]  Bouvier B, Lavery R (2009) A free energy pathway for the interaction of the SRY protein with its binding site on DNA from atomistic simulations. J Am Chem Soc 131: 9864–9865. doi: 10.1021/ja901761a
[23]  Potoyan DA, Papoian GA (2012) Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation. Proc Natl Acad Sci U S A 109: 17857–17862. doi: 10.1073/pnas.1201805109
[24]  Reddy CK, Das A, Jayaram B (2001) Do water molecules mediate protein-DNA recognition? J Mol Biol 314: 619–632. doi: 10.1006/jmbi.2001.5154
[25]  VonHippel PH (1994) Protein-DNA recognition: new perspective and underlying themes. Science 263: 769–770. doi: 10.1126/science.8303292
[26]  Coulocheri SA, Pigis DG, Papavassiliou KA, Papavassiliou AG (2007) Hydrogen bonds in protein-DNA complexes: where geometry meets plasticity. Biochimie 89: 1291–1303. doi: 10.1016/j.biochi.2007.07.020
[27]  Konig P, Fairall L, Rhodes D (1998) Sequence-specific dna recognition by the myb-like domain of the human telomere binding protein trf1: a model for the protein-dna complex. Nucleic Acids Res 26: 1731–1740. doi: 10.1093/nar/26.7.1731
[28]  Saikumar P, Murali R, Reddy EP (1990) Role of tryptophan repeats and anking amino acids in Myb-DNA interactions. Proc Natl Acad Sci U S A 87: 8452–8456. doi: 10.1073/pnas.87.21.8452
[29]  McKerlie M, Zhu XD (2011) Cyclin b-dependent kinase 1 regulates human trf1 to modulate the resolution of sister telomeres. Nat Commun 2: 371. doi: 10.1038/ncomms1372
[30]  Blainey PC, Luo G, Kou S, Mangel WF, Verdine GL, et al. (2009) Nonspecifically bound proteins spin while diffusing along DNA. Nat Struct Mol Biol 16: 1224–1229. doi: 10.1038/nsmb.1716
[31]  Halford SE, Marko JF (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res 32: 3040–3052. doi: 10.1093/nar/gkh624
[32]  Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61: 704–721. doi: 10.1002/prot.20660
[33]  Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91: 43–56. doi: 10.1016/0010-4655(95)00042-e
[34]  Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
[35]  Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, et al. (2007) Refinenement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophys J 92: 3817–3829. doi: 10.1529/biophysj.106.097782
[36]  Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N*log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
[37]  Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690. doi: 10.1063/1.448118
[38]  Miyamoto S, Kollman PA (1992) Settle – an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13: 952–962. doi: 10.1002/jcc.540130805
[39]  Hess B (2008) P-lincs: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation 4: 116–122. doi: 10.1021/ct700200b
[40]  Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimations: umbrella sampling. J Comput Phys 23: 187–199. doi: 10.1016/0021-9991(77)90121-8
[41]  Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules.1. The Method. J Comput Chem 13: 1011–1021. doi: 10.1002/jcc.540130812
[42]  Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8: 1551–1566. doi: 10.1038/nprot.2013.092
[43]  Consortium U (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38: D142–D148. doi: 10.1093/nar/gkp846
[44]  Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. doi: 10.1038/msb.2011.75
[45]  Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. doi: 10.1093/bioinformatics/btl446

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133