全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Role of Carboxydothermus hydrogenoformans in the Conversion of Calcium Phosphate from Amorphous to Crystalline State

DOI: 10.1371/journal.pone.0089480

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two previously unknown modes of biomineralization observed in the presence of Carboxydothermus hydrogenoformans are presented. Following the addition of NaHCO3 and the formation of an amorphous calcium phosphate precipitate in a DSMZ medium inoculated with C. hydrogenoformans, two distinct crystalline solids were recovered after 15 and 30 days of incubation. The first of these solids occurred as micrometric clusters of blocky, angular crystals, which were associated with bacterial biofilm. The second solid occurred as 30–50 nm nanorods that were found scattered among the organic products of bacterial lysis. The biphasic mixture of solids was clearly dominated by the first phase. The X-ray diffractometry (XRD) peaks and Fourier transform infrared spectroscopy (FTIR) spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite. No organic content or protein could be identified by dissolving the solids. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. Since Mg is known to be a strong inhibitor of the nucleation and growth of CaP, C. hydrogenoformans may act by providing sites that chelate Mg or form complexes with it, thus decreasing its activity as nucleation and crystal growth inhibitor. The synthesis of whitlockite and nano-HAP-like material by C. hydrogenoformans demonstrates the versatility of this organism also known for its ability to perform the water-gas shift reaction, and may have applications in bacterially mediated synthesis of CaP materials, as an environmentally friendly alternative process.

References

[1]  Lowenstam HA (1981) Minerals formed by organisms. Science 211: 1126–1131 doi:10.1126/science.7008198.
[2]  B?uerlein E (2007) Growth and Form: What is the Aim of Biomineralization? In: Buerlein E, editor. Handbook of Biomineralization. Weinheim, Germany: Wiley-VCH Verlag GmbH. pp. 1–20. doi:10.1002/9783527619443.ch1
[3]  Weiner S (2003) An Overview of Biomineralization Processes and the Problem of the Vital Effect. Rev Mineral Geochemistry 54: 1–29 doi:10.2113/0540001.
[4]  C?lfen H, Qi L (2001) A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer. Chem – A Eur J 7: 106–116. doi:10.1002/1521-3765(20010105)7:1<106::AID-?CHEM106>3.0.CO;2-D.
[5]  Berman A, Hanson J, Leiserowitz L, Koetzle TF, Weiner S, et al. (1993) Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science 259: 776–779 doi:10.1126/science.259.5096.776.
[6]  Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365: 499–505 doi:10.1038/365499a0.
[7]  Frankel RB, Bazylinski DA (2003) Biologically Induced Mineralization by Bacteria. Rev Mineral Geochemistry 54: 95–114 doi:10.2113/0540095.
[8]  Bazylinski DA, Richard FB (2003) Biologically Controlled Mineralization in Prokaryotes. Rev Mineral Geochemistry 54: 217–247 doi:10.2113/0540217.
[9]  Bazylinski DA, Frankel RB, Konhauser KO (2007) Modes of Biomineralization of Magnetite by Microbes. Geomicrobiol J 24: 465–475 doi:10.1080/01490450701572259.
[10]  Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24: 615–623 doi:10.1111/j.1574-6976.2000.tb00562.x.
[11]  Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and Toxic Metals at 100 C by Pyrobaculum islandicum. Appl Environ Microbiol 66: 1050–1056 doi:10.1128/AEM.66.3.1050-1056.2000.
[12]  Gerhardt M, Svetlichny V, Sokolova TG, Zavarzin GA, Ringpfeil M (1991) Bacterial CO utilization with H 2 production by the strictly anaerobic lithoautotrophic thermophilic bacterium Carboxydothermus hydrogenus DSM 6008 isolated from a hot swamp. FEMS Microbiol Lett 83: 267–271 doi:10.1111/j.1574-6968.1991.tb04475.x.
[13]  Sidaway DA (1978) A microbiological study of dental calculus. J Periodontal Res 13: 349–359 doi:10.1111/j.1600-0765.1978.tb00189.x.
[14]  Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl 41: 3130–3146 doi:;10.1002/1521-3773(20020902)41:17<3130::A?ID-ANIE3130>3.0.CO;2-1.
[15]  Chevalier J, Gremillard L (2009) Ceramics for medical applications: A picture for the next 20 years. J Eur Ceram Soc 29: 1245–1255 doi:10.1016/j.jeurceramsoc.2008.08.025.
[16]  Yuan H, Yang Z, Li Y, Zhang X, De Bruijn JD, et al. (1998) Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med 9: 723–726 doi:10.1023/A:1008950902047.
[17]  LeGeros RZ (2002) Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clin Orthop Relat Res 395: 81–98 doi:10.1097/00003086-200202000-00009.
[18]  Epple M, Kovtun A (2010) Functionalized Calcium Phosphate Nanoparticles for Biomedical Application. Key Eng Mater 441: 299–305 doi:10.4028/www.scientific.net/KEM.441.299.
[19]  Stams AJ, Van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59: 1114–1119.
[20]  Zhao Y, Cimpoia R, Liu Z, Guiot SR (2011) Orthogonal optimization of Carboxydothermus hydrogenoformans culture medium for hydrogen production from carbon monoxide by biological water-gas shift reaction. Int J Hydrogen Energy 36: 10655–10665 doi:10.1016/j.ijhydene.2011.05.134.
[21]  Eaton A, Clesceri L, Rice E, Greenberg A (2005) Standard methods for the examination of water and wastewater. 21st ed. Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.
[22]  ASTM Standard D5373 (2008) Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal. West Conshohocken, PA.
[23]  ASTM Standard D5291 (2010) Instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants. West Conshohocken, PA.
[24]  Pfaff JD (1993) US EPA Method 300.0, Methods for the determination of inorganic substances in environmental samples. EPA-600/R-93-100, NTIS PB94-121811. Cincinnati, OH, USA.
[25]  CEAEQ (2004) Détermination de la spéciation de l'arsenic: méthode par chromatographie à haute pression couplé à un spectromètre de masse à source ionisante au plasma d'argon. MA.200-As 1.1. Québec, QC, Canada.
[26]  Gopal R, Calvo C (1972) Structural Relationship of Whitlockite and βCa3(PO4)2. Nat Phys Sci 237: 30–32 doi:10.1038/physci237030a0.
[27]  Gopal R, Calvo C, Ito J, Sabine WK (1974) Crystal Structure of Synthetic Mg-Whitlockite, Ca18Mg2H2(PO4)14. Can J Chem 52: 1155–1164 doi:10.1139/v74-181.
[28]  Frondel C (1943) Mineralogy of the calcium phosphates in insular phosphate rock. Am Mineral 28: 215–232.
[29]  Kweh SW, Khor K, Cheang P (2000) Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock: microstructure and mechanical properties. Biomaterials 21: 1223–1234 doi:10.1016/S0142-9612(99)00275-6.
[30]  Rouf MA (1964) Spectrochemical Analysis of Inorganic Elements in Bacteria. J Bacteriol 88: 1545–1549.
[31]  Mandel S, Tas CA (2010) Brushite (CaHPO4?2H2O) to octacalcium phosphate (Ca8(HPO4)2(PO4)4?5H2O) transformation in DMEM solutions at 36.5°C. Mater Sci Eng C 30: 245–254 doi:10.1016/j.msec.2009.10.009.
[32]  Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in thev 3 PO4 domain. Calcif Tissue Int 49: 383–388 doi:10.1007/BF02555847.
[33]  Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in thev 4 PO4 domain. Calcif Tissue Int 46: 384–394 doi:10.1007/BF02554969.
[34]  Layrolle P, Ito A, Tateishi T (1998) Sol-Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics. J Am Ceram Soc 81: 1421–1428 doi:10.1111/j.1151-2916.1998.tb02499.x.
[35]  Azari F, Vali H, Guerquin-Kern J-L, Wu T-D, Croisy A, et al. (2008) Intracellular precipitation of hydroxyapatite mineral and implications for pathologic calcification. J Struct Biol 162: 468–479 doi:http://dx.doi.org/10.1016/j.jsb.2008.03.?003.
[36]  Lagier R, Baud C-A (2003) Magnesium Whitlockite, a Calcium Phosphate Crystal of Special Interest in Pathology. Pathol - Res Pract 199: 329–335 doi:http://dx.doi.org/10.1078/0344-0338-0042?5.
[37]  Blumenthal NC (1989) Mechanisms of inhibition of calcification. Clin Orthop Relat Res 247: 279–289. doi: 10.1097/00003086-198910000-00038
[38]  Boskey AL, Posner AS (1974) Magnesium stabilization of amorphous calcium phosphate: A kinetic study. Mater Res Bull 9: 907–916 doi:http://dx.doi.org/10.1016/0025-5408(74)9?0169-X.
[39]  Medina Ledo H, Thackray AC, Jones IP, Marquis PM, Macaskie LE, et al. (2008) Microstructure and composition of biosynthetically synthesised hydroxyapatite. J Mater Sci Mater Med 19: 3419–3427 doi:10.1007/s10856-008-3485-3.
[40]  Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, et al. (2000) Properties of Calcium Phosphate Ceramics in Relation to Their In Vivo Behavior. J Trauma Inj Infect Crit Care 48: 179 doi:10.1097/00005373-200001000-00037.
[41]  Hench LL (1991) Bioceramics: From Concept to Clinic. J Am Ceram Soc 74: 1487–1510 doi:10.1111/j.1151-2916.1991.tb07132.x.
[42]  Ramselaar MMA, Driessens FCM, Kalk W, Wijn JR, Mullem PJ (1991) Biodegradation of four calcium phosphate ceramics;in vivo rates and tissue interactions. J Mater Sci Mater Med 2: 63–70 doi:10.1007/BF00703460.
[43]  Sader MS, Legeros RZ, Soares GA (2009) Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J Mater Sci Mater Med 20: 521–527 doi:10.1007/s10856-008-3610-3.
[44]  Svetlichny VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, et al. (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing Thermophilic Anaerobic Bacterium from Hydrothermal Environments of Kunashir Island. Syst Appl Microbiol 14: 254–260 doi:10.1016/S0723-2020(11)80377-2.
[45]  Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, et al. (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1: e65 doi:10.1371/journal.pgen.0010065.
[46]  Henstra AM, Stams AJM (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70: 7236–7240 doi:10.1128/AEM.70.12.7236-7240.2004.
[47]  Henstra AM, Stams AJM (2011) Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans. Int J Microbiol 2011: : 4 pages. doi:10.1155/2011/641582
[48]  Newsome DS (1980) The Water-Gas Shift Reaction. Catal Rev 21: 275–318 doi:10.1080/03602458008067535.
[49]  Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18: 200–206 doi:10.1016/j.copbio.2007.03.008.
[50]  Zhao Y, Haddad M, Cimpoia R, Liu Z, Guiot SR (2013) Performance of a Carboxydothermus hydrogenoformans-immobilizing membrane reactor for syngas upgrading into hydrogen. Int J Hydrogen Energy 38: 2167–2175 doi:http://dx.doi.org/10.1016/j.ijhydene.201?2.11.038.
[51]  Flickinger M, Drew S (2002) Fermentation, Biocatalysis and Bioseparation. In: Flickinger MC, Drew SW, editors. Encyclopedia of Bioprocess Technology, 1st ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., Vol. 1 . pp. 267–291. doi:10.1002/0471250589
[52]  Emsley J (1991) The elements. 2d ed. Oxford, UK.: Clarendon Press.
[53]  Tung MS (1998) Calcium Phosphates in Biological and Industrial Systems. In: Amjad Z, editor. Biological and industrial systems. Boston, MA: Springer US. pp. 1–19. doi:10.1007/978-1-4615-5517-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133