全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Pentachlorophenol Metabolite Tetrachlorohydroquinone Induces Massive ROS and Prolonged p-ERK Expression in Splenocytes, Leading to Inhibition of Apoptosis and Necrotic Cell Death

DOI: 10.1371/journal.pone.0089483

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pentachlorophenol (PCP) has been used extensively as a biocide and a wood preservative and has been reported to be immunosuppressive in rodents and humans. Tetrachlorohydroquinone (TCHQ) is a major metabolite of PCP. TCHQ has been identified as the main cause of PCP-induced genotoxicity due to reactive oxidant stress (ROS). However, the precise mechanisms associated with the immunotoxic effects of PCP and TCHQ remain unclear. The aim of this study was to examine the effects of PCP and TCHQ on the induction of ROS and injury to primary mouse splenocytes. Our results shown that TCHQ was more toxic than PCP and that a high dose of TCHQ led to necrotic cell death of the splenocytes through induction of massive and sudden ROS and prolonged ROS-triggered ERK activation. Inhibition of ROS production by N-acetyl-cysteine (NAC) partially restored the mitochondrial membrane potential, inhibited ERK activity, elevated caspase-3 activity and PARP cleavage, and, eventually, switched the TCHQ-induced necrosis to apoptosis. We suggest that prolonged ERK activation is essential for TCHQ-induced necrosis, and that ROS play a pivotal role in the different TCHQ-induced cell death mechanisms.

References

[1]  Bevenue A, Beckman H (1967) Pentachlorophenol: a discussion of its properties and its occurrence as a residue in human and animal tissues. Residue Rev 19: 83–134. doi: 10.1007/978-1-4615-8425-4_5
[2]  Mycroft FJ, Schlag R (1986) Pentachlorophenol. Hazard Review 3: 1–3.
[3]  Wang YJ, Lin JK (1995) Estimation of selected phenols in drinking water with in situ acetylation and study on the DNA damaging properties of polychlorinated phenols. Arch Environ Contam Toxicol 28: 537–542. doi: 10.1007/bf00211639
[4]  Pentachlorophenol. IARC Monogr Eval Carcinog Risks Hum 53: 371–402.
[5]  Seiler JP (1991) Pentachlorophenol. Mutat Res 257: 27–47. doi: 10.1016/0165-1110(91)90018-q
[6]  Okeke BC, Paterson A, Smith JE, Watson-Craik IA (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl Microbiol Biotechnol 48: 563–569. doi: 10.1007/s002530051097
[7]  Law WM, Lau WN, Lo KL, Wai LM, Chiu SW (2003) Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 52: 1531–1537. doi: 10.1016/s0045-6535(03)00492-2
[8]  Reigner BG, Bois FY, Tozer TN (1992) Assessment of pentachlorophenol exposure in humans using the clearance concept. Hum Exp Toxicol 11: 17–26. doi: 10.1177/096032719201100103
[9]  Blakley BR, Yole MJ, Brousseau P, Boermans H, Fournier M (1998) Effect of pentachlorophenol on immune function. Toxicology 125: 141–148. doi: 10.1016/s0300-483x(97)00154-6
[10]  Chhabra RS, Maronpot RM, Bucher JR, Haseman JK, Toft JD, et al. (1999) Toxicology and carcinogenesis studies of pentachlorophenol in rats. Toxicol Sci 48: 14–20. doi: 10.1093/toxsci/48.1.14
[11]  Umemura T, Kai S, Hasegawa R, Sai K, Kurokawa Y, et al. (1999) Pentachlorophenol (PCP) produces liver oxidative stress and promotes but does not initiate hepatocarcinogenesis in B6C3F1 mice. Carcinogenesis 20: 1115–1120. doi: 10.1093/carcin/20.6.1115
[12]  Roberts HJ (1990) Pentachlorophenol-associated aplastic anemia, red cell aplasia, leukemia and other blood disorders. J Fla Med Assoc 77: 86–90.
[13]  Carstens CP, Blum JK, Witte I (1990) The role of hydroxyl radicals in tetrachlorohydroquinone induced DNA strand break formation in PM2 DNA and human fibroblasts. Chem Biol Interact 74: 305–314. doi: 10.1016/0009-2797(90)90047-q
[14]  Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273 (Pt 3): 601–604.
[15]  Menghini R (1988) Genotoxicity of active oxygen species in mammalian cells. Mutat Res 195: 215–230. doi: 10.1016/0165-1110(88)90001-2
[16]  Robertson JD, Orrenius S (2000) Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev Toxicol 30: 609–627. doi: 10.1080/10408440008951122
[17]  Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9: 378–390. doi: 10.1038/nrm2393
[18]  Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, et al. (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11. doi: 10.1038/cdd.2008.150
[19]  Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700–714. doi: 10.1038/nrm2970
[20]  Hetz CA, Torres V, Quest AF (2005) Beyond apoptosis: nonapoptotic cell death in physiology and disease. Biochem Cell Biol 83: 579–588. doi: 10.1139/o05-065
[21]  Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32: 37–43. doi: 10.1016/j.tibs.2006.11.001
[22]  Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18: 6087–6093. doi: 10.1038/sj.onc.1203129
[23]  Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252. doi: 10.1016/s0092-8674(00)00116-1
[24]  Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331. doi: 10.1126/science.270.5240.1326
[25]  Chen YR, Wang X, Templeton D, Davis RJ, Tan TH (1996) The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 271: 31929–31936. doi: 10.1074/jbc.271.50.31929
[26]  Guo YL, Baysal K, Kang B, Yang LJ, Williamson JR (1998) Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-alpha in rat mesangial cells. J Biol Chem 273: 4027–4034. doi: 10.1074/jbc.273.7.4027
[27]  Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18: 7719–7730. doi: 10.1038/sj.onc.1203249
[28]  Chen SY, Chiu LY, Maa MC, Wang JS, Chien CL, et al. (2011) zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7: 217–228. doi: 10.4161/auto.7.2.14212
[29]  Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757: 1371–1387. doi: 10.1016/j.bbabio.2006.06.014
[30]  Wang YJ, Ho YS, Chu SW, Lien HJ, Liu TH, et al. (1997) Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone, a toxic metabolite of pentachlorophenol. Chem Biol Interact 105: 1–16. doi: 10.1016/s0009-2797(97)00023-9
[31]  Wang YJ, Ho YS, Jeng JH, Su HJ, Lee CC (2000) Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chem Biol Interact 128: 173–188. doi: 10.1016/s0009-2797(00)00194-0
[32]  Wang YJ, Lee CC, Chang WC, Liou HB, Ho YS (2001) Oxidative stress and liver toxicity in rats and human hepatoma cell line induced by pentachlorophenol and its major metabolite tetrachlorohydroquinone. Toxicol Lett 122: 157–169. doi: 10.1016/s0378-4274(01)00361-7
[33]  Chang WC, Jeng JH, Shieh CC, Tsai YC, Ho YS, et al. (2003) Skin tumor-promoting potential and systemic effects of pentachlorophenol and its major metabolite tetrachlorohydroquinone in CD-1 Mice. Mol Carcinog 36: 161–170. doi: 10.1002/mc.10113
[34]  Lin YP, Zhu BZ, Yang MC, Frei B, Pan MH, et al. (2004) Bcl-2 overexpression inhibits tetrachlorohydroquinone-induced apoptosis in NIH3T3 cells: a possible mechanism for tumor promotion. Mol Carcinog 40: 24–33. doi: 10.1002/mc.20021
[35]  Wang YJ, Yang MC, Pan MH (2008) Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage. Food Chem Toxicol 46: 3739–3748. doi: 10.1016/j.fct.2008.09.064
[36]  Chen HM, Lee YH, Chen RJ, Chiu HW, Wang BJ, et al. (2013) The immunotoxic effects of dual exposure to PCP and TCDD. Chem Biol Interact 206: 166–174. doi: 10.1016/j.cbi.2013.09.005
[37]  McConnachie PR, Zahalsky AC (1991) Immunological consequences of exposure to pentachlorophenol. Arch Environ Health 46: 249–253. doi: 10.1080/00039896.1991.9937456
[38]  Daniel V, Huber W, Bauer K, Opelz G (1995) Impaired in-vitro lymphocyte responses in patients with elevated pentachlorophenol (PCP) blood levels. Arch Environ Health 50: 287–292. doi: 10.1080/00039896.1995.9935956
[39]  Daniel V, Huber W, Bauer K, Suesal C, Mytilineos J, et al. (2001) Association of elevated blood levels of pentachlorophenol (PCP) with cellular and humoral immunodeficiencies. Arch Environ Health 56: 77–83. doi: 10.1080/00039890109604057
[40]  De Flora S, Izzotti A, D’Agostini F, Balansky RM (2001) Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22: 999–1013. doi: 10.1093/carcin/22.7.999
[41]  Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6: 593–597. doi: 10.1016/0891-5849(89)90066-x
[42]  Aydin S, Ozaras R, Uzun H, Belce A, Uslu E, et al. (2002) N-acetylcysteine reduced the effect of ethanol on antioxidant system in rat plasma and brain tissue. Tohoku J Exp Med 198: 71–77. doi: 10.1620/tjem.198.71
[43]  Ercal N, Treeratphan P, Hammond TC, Matthews RH, Grannemann NH, et al. (1996) In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic Biol Med 21: 157–161. doi: 10.1016/0891-5849(96)00020-2
[44]  Kamboj A, Kiran R, Sandhir R (2006) Carbofuran-induced neurochemical and neurobehavioral alterations in rats: attenuation by N-acetylcysteine. Exp Brain Res 170: 567–575. doi: 10.1007/s00221-005-0241-5
[45]  Koppal T, Drake J, Butterfield DA (1999) In vivo modulation of rodent glutathione and its role in peroxynitrite-induced neocortical synaptosomal membrane protein damage. Biochim Biophys Acta 1453: 407–411. doi: 10.1016/s0925-4439(99)00014-9
[46]  Pocernich CB, La Fontaine M, Butterfield DA (2000) In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int 36: 185–191. doi: 10.1016/s0197-0186(99)00126-6
[47]  Andreassen OA, Dedeoglu A, Klivenyi P, Beal MF, Bush AI (2000) N-acetyl-L-cysteine improves survival and preserves motor performance in an animal model of familial amyotrophic lateral sclerosis. Neuroreport 11: 2491–2493. doi: 10.1097/00001756-200008030-00029
[48]  Zachwieja J, Zaniew M, Bobkowski W, Stefaniak E, Warzywoda A, et al. (2005) Beneficial in vitro effect of N-acetyl-cysteine on oxidative stress and apoptosis. Pediatr Nephrol 20: 725–731. doi: 10.1007/s00467-004-1806-4
[49]  Maheshwari A, Misro MM, Aggarwal A, Sharma RK (2012) N-acetyl-L-cysteine modulates multiple signaling pathways to rescue male germ cells from apoptosis induced by chronic hCG administration to rats. Apoptosis 17: 551–565. doi: 10.1007/s10495-012-0703-8
[50]  Holler N, Zaru R, Micheau O, Thome M, Attinger A, et al. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1: 489–495.
[51]  Ramos B, Lahti JM, Claro E, Jackowski S (2003) Prevalence of necrosis in C2-ceramide-induced cytotoxicity in NB16 neuroblastoma cells. Mol Pharmacol 64: 502–511. doi: 10.1124/mol.64.2.502
[52]  Dahlhaus M, Almstadt E, Appel KE (1994) The pentachlorophenol metabolite tetrachloro-p-hydroquinone induces the formation of 8-hydroxy-2-deoxyguanosine in liver DNA of male B6C3F1 mice. Toxicol Lett 74: 265–274. doi: 10.1016/0378-4274(94)90085-x
[53]  Umemura T, Sai-Kato K, Takagi A, Hasegawa R, Kurokawa Y (1996) Oxidative DNA damage and cell proliferation in the livers of B6C3F1 mice exposed to pentachlorophenol in their diet. Fundam Appl Toxicol 30: 285–289. doi: 10.1093/toxsci/30.2.285
[54]  Lin PH, Nakamura J, Yamaguchi S, Upton PB, La DK, et al. (2001) Oxidative damage and direct adducts in calf thymus DNA induced by the pentachlorophenol metabolites, tetrachlorohydroquinone and tetrachloro-1,4-benzoquinone. Carcinogenesis 22: 627–634. doi: 10.1093/carcin/22.4.627
[55]  Lin PH, La DK, Upton PB, Swenberg JA (2002) Analysis of DNA adducts in rats exposed to pentachlorophenol. Carcinogenesis 23: 365–369. doi: 10.1093/carcin/23.2.365
[56]  Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, et al. (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652–658. doi: 10.1038/nature03317
[57]  Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, et al. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325: 332–336. doi: 10.1126/science.1172308
[58]  Tait SW, Green DR (2012) Mitochondria and cell signalling. J Cell Sci 125: 807–815. doi: 10.1242/jcs.099234
[59]  Wang BJ, Guo YL, Chang HY, Sheu HM, Pan MH, et al. (2010) N-acetylcysteine inhibits chromium hypersensitivity in coadjuvant chromium-sensitized albino guinea pigs by suppressing the effects of reactive oxygen species. Exp Dermatol 19: e191–200. doi: 10.1111/j.1600-0625.2009.01045.x
[60]  Akool el S, Gauer S, Osman B, Doller A, Schulz S, et al. (2012) Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 83: 286–295. doi: 10.1016/j.bcp.2011.11.001
[61]  Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, et al. (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22: 3898–3909. doi: 10.1093/emboj/cdg379
[62]  Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, et al. (1994) Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol 128: 169–181.
[63]  Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312. doi: 10.1126/science.281.5381.1309
[64]  Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, et al. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207–2216.
[65]  Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5: 551–562. doi: 10.1038/sj.cdd.4400404
[66]  Appelt U, Sheriff A, Gaipl US, Kalden JR, Voll RE, et al. (2005) Viable, apoptotic and necrotic monocytes expose phosphatidylserine: cooperative binding of the ligand Annexin V to dying but not viable cells and implications for PS-dependent clearance. Cell Death Differ 12: 194–196. doi: 10.1038/sj.cdd.4401527
[67]  van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31: 1–9. doi: 10.1002/(sici)1097-0320(19980101)31:1<1::aid-cyto1>3.0.co;2-r
[68]  Waring P, Lambert D, Sjaarda A, Hurne A, Beaver J (1999) Increased cell surface exposure of phosphatidylserine on propidium iodide negative thymocytes undergoing death by necrosis. Cell Death Differ 6: 624–637. doi: 10.1038/sj.cdd.4400540
[69]  Krysko O, De Ridder L, Cornelissen M (2004) Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis 9: 495–500. doi: 10.1023/b:appt.0000031452.75162.75
[70]  Hirt UA, Leist M (2003) Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 10: 1156–1164. doi: 10.1038/sj.cdd.4401286
[71]  Sai-Kato K, Umemura T, Takagi A, Hasegawa R, Tanimura A, et al. (1995) Pentachlorophenol-induced oxidative DNA damage in mouse liver and protective effect of antioxidants. Food Chem Toxicol 33: 877–882. doi: 10.1016/0278-6915(95)00056-8
[72]  Columbano A (1995) Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem 58: 181–190. doi: 10.1002/jcb.240580207
[73]  Wispriyono B, Matsuoka M, Igisu H (2002) Effects of pentachlorophenol and tetrachlorohydroquinone on mitogen-activated protein kinase pathways in Jurkat T cells. Environ Health Perspect 110: 139–143. doi: 10.1289/ehp.02110139
[74]  Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12: 258–266. doi: 10.1016/s0962-8924(02)02294-8
[75]  Gate L, Lunk A, Tew KD (2003) Resistance to phorbol 12-myristate 13-acetate-induced cell growth arrest in an HL60 cell line chronically exposed to a glutathione S-transferase pi inhibitor. Biochem Pharmacol 65: 1611–1622. doi: 10.1016/s0006-2952(03)00152-7
[76]  Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249: 350–354. doi: 10.1006/bbrc.1998.9151
[77]  de Groot RP, Coffer PJ, Koenderman L (1998) Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 10: 619–628. doi: 10.1016/s0898-6568(98)00023-0
[78]  Yan CY, Greene LA (1998) Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci 18: 4042–4049.
[79]  Shelton JG, Steelman LS, Lee JT, Knapp SL, Blalock WL, et al. (2003) Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene 22: 2478–2492. doi: 10.1038/sj.onc.1206321
[80]  Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 276: 16484–16490. doi: 10.1074/jbc.m010384200
[81]  Soderstrom TS, Poukkula M, Holmstrom TH, Heiskanen KM, Eriksson JE (2002) Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8. J Immunol 169: 2851–2860. doi: 10.4049/jimmunol.169.6.2851
[82]  Raha S, Robinson BH (2001) Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 106: 62–70. doi: 10.1002/ajmg.1398
[83]  Griendling KK (2005) ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25: 272–273. doi: 10.1161/01.atv.0000153515.72375.3b
[84]  Bai J, Cederbaum AI (2001) Mitochondrial catalase and oxidative injury. Biol Signals Recept 10: 189–199. doi: 10.1159/000046887
[85]  Han KS, Kang HJ, Kim EY, Yoon WJ, Sohn S, et al. (2001) 1,2-bis(2-Aminophenoxy)ethane-N,N,N′,N′-?tetraaceticacid induces caspase-mediated apoptosis and reactive oxygen species-mediated necrosis in cultured cortical neurons. J Neurochem 78: 230–239. doi: 10.1046/j.1471-4159.2001.00394.x
[86]  Dypbukt JM, Ankarcrona M, Burkitt M, Sjoholm A, Strom K, et al. (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem 269: 30553–30560.
[87]  Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48: 41–47. doi: 10.1080/713803463
[88]  Villena J, Henriquez M, Torres V, Moraga F, Diaz-Elizondo J, et al. (2008) Ceramide-induced formation of ROS and ATP depletion trigger necrosis in lymphoid cells. Free Radic Biol Med 44: 1146–1160. doi: 10.1016/j.freeradbiomed.2007.12.017
[89]  Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92: 7162–7166. doi: 10.1073/pnas.92.16.7162
[90]  Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, et al. (1991) Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 201: 99–106. doi: 10.1111/j.1432-1033.1991.tb16261.x
[91]  Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10: 2247–2258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133