[1] | Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11: 485–494. doi: 10.1101/lm.78804
|
[2] | Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33: 56–72. doi: 10.1038/sj.npp.1301555
|
[3] | Courville AC, Daw ND, Touretzky DS (2006) Bayesian theories of conditioning in a changing world. Trends Cogn Sci 10: 294–300. doi: 10.1016/j.tics.2006.05.004
|
[4] | Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, et al. (2012) Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15: 1040–1046. doi: 10.1038/nn.3130
|
[5] | Pearce JM, Kaye H, Hall G (1982) Predictive accuracy and stimulus associability: Development of a model for Pavlovian learning. In: Commons ML, Herrnstein RJ, Wagner AR, editors. Quantitative Analyses of Behavior. Cambridge, MA: Ballinger. 241–255.
|
[6] | Horsley RR, Osborne M, Norman C, Wells T (2012) High-frequency gamblers show increased resistance to extinction following partial reinforcement. Behav Brain Res 229: 438–442. doi: 10.1016/j.bbr.2012.01.024
|
[7] | Weatherly JN, Sauter JM, King BM (2004) The “big win” and resistance to extinction when gambling. J Psychol 138: 495–504. doi: 10.3200/jrlp.138.6.495-504
|
[8] | Haselgrove M, Aydin A, Pearce JM (2004) A partial reinforcement extinction effect despite equal rates of reinforcement during Pavlovian conditioning. J Exp Psychol Anim Behav Process 30: 240–250. doi: 10.1037/0097-7403.30.3.240
|
[9] | Bacon WE (1962) Partial-reinforcement extinction effect following different amounts of training. J Comp Physiol Psychol 55: 998–1003. doi: 10.1037/h0048614
|
[10] | Lewis DJ (1960) Partial reinforcement: a selective review of the literature since 1950. Psychol Bull 57: 1–28. doi: 10.1037/h0040963
|
[11] | Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, et al. (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16: 966–973. doi: 10.1038/nn.3413
|
[12] | Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 30: 203–210. doi: 10.1016/j.tins.2007.03.007
|
[13] | Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299: 1898–1902. doi: 10.1126/science.1077349
|
[14] | Roesch MR, Calu DJ, Schoenbaum G (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat Neurosci 10: 1615–1624. doi: 10.1038/nn2013
|
[15] | Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND (2011) Differential roles of human striatum and amygdala in associative learning. Nat Neurosci 14: 1250–1252. doi: 10.1038/nn.2904
|
[16] | Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) Neural correlates of variations in event processing during learning in basolateral amygdala. J Neurosci 30: 2464–2471. doi: 10.1523/jneurosci.5781-09.2010
|
[17] | Esber GR, Roesch MR, Bali S, Trageser J, Bissonette GB, et al. (2012) Attention-related Pearce-Kaye-Hall signals in basolateral amygdala require the midbrain dopaminergic system. Biol Psychiatry 72: 1012–1019. doi: 10.1016/j.biopsych.2012.05.023
|
[18] | Weiner I, Bercovitz H, Lubow RE, Feldon J (1985) The abolition of the partial reinforcement extinction effect (PREE) by amphetamine. Psychopharmacology (Berl) 86: 318–323. doi: 10.1007/bf00432221
|
[19] | Pan WX, Brown J, Dudman JT (2013) Neural signals of extinction in the inhibitory microcircuit of the ventral midbrain. Nat Neurosci 16: 71–78. doi: 10.1038/nn.3283
|
[20] | Pan WX, Schmidt R, Wickens JR, Hyland BI (2008) Tripartite mechanism of extinction suggested by dopamine neuron activity and temporal difference model. J Neurosci 28: 9619–9631. doi: 10.1523/jneurosci.0255-08.2008
|
[21] | Lupica CR, Riegel AC, Hoffman AF (2004) Marijuana and cannabinoid regulation of brain reward circuits. Br J Pharmacol 143: 227–234. doi: 10.1038/sj.bjp.0705931
|
[22] | Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, et al. (2008) Explicit neural signals reflecting reward uncertainty. Philos Trans R Soc Lond B Biol Sci 363: 3801–3811. doi: 10.1098/rstb.2008.0152
|
[23] | Redish AD, Jensen S, Johnson A, Kurth-Nelson Z (2007) Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol Rev 114: 784–805. doi: 10.1037/0033-295x.114.3.784
|
[24] | Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599. doi: 10.1126/science.275.5306.1593
|
[25] | Sutton RS, Barto AG (1998) Reinforcement learning : an introduction. Cambridge, Mass.: MIT Press. xviii, 322 p. p.
|
[26] | Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25: 6235–6242. doi: 10.1523/jneurosci.1478-05.2005
|
[27] | Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30: 14273–14283. doi: 10.1523/jneurosci.1894-10.2010
|
[28] | Moquin KF, Michael AC (2009) Tonic autoinhibition contributes to the heterogeneity of evoked dopamine release in the rat striatum. J Neurochem 110: 1491–1501. doi: 10.1111/j.1471-4159.2009.06254.x
|
[29] | French ED, Dillon K, Wu X (1997) Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 8: 649–652. doi: 10.1097/00001756-199702100-00014
|
[30] | Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM (2004) Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 24: 4393–4400. doi: 10.1523/jneurosci.0529-04.2004
|
[31] | Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422: 614–618. doi: 10.1038/nature01476
|
[32] | Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306: 1940–1943. doi: 10.1126/science.1102941
|
[33] | Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30: 62–69. doi: 10.1016/j.tins.2006.12.003
|
[34] | Beeler JA, Daw N, Frazier CR, Zhuang X (2010) Tonic dopamine modulates exploitation of reward learning. Front Behav Neurosci 4: 170. doi: 10.3389/fnbeh.2010.00170
|
[35] | Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl) 191: 507–520. doi: 10.1007/s00213-006-0502-4
|
[36] | Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74: 1–58. doi: 10.1016/j.pneurobio.2004.10.002
|
[37] | Theios J (1962) The partial reinforcement effect sustained through blocks of continuous reinforcement. J Exp Psychol 64: 1–6. doi: 10.1037/h0046302
|
[38] | Jenkins HM (1962) Resistance to extinction when partial reinforcement is followed by regular reinforcement. J Exp Psychol 64: 441–450. doi: 10.1037/h0048700
|
[39] | Nassar MR, Wilson RC, Heasly B, Gold JI (2010) An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment. J Neurosci 30: 12366–12378. doi: 10.1523/jneurosci.0822-10.2010
|
[40] | Nadel L, Samsonovich A, Ryan L, Moscovitch M (2000) Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus 10: 352–368. doi: 10.1002/1098-1063(2000)10:4<352::aid-hipo2>3.0.co;2-d
|
[41] | Nader K, Hardt O (2009) A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10: 224–234. doi: 10.1038/nrn2590
|
[42] | Gershman SJ, Blei DM, Niv Y (2010) Context, learning, and extinction. Psychol Rev 117: 197–209. doi: 10.1037/a0017808
|
[43] | Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8: 1704–1711. doi: 10.1038/nn1560
|
[44] | Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188: 567–585. doi: 10.1007/s00213-006-0404-5
|
[45] | van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG (2007) Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex 17: 1444–1453. doi: 10.1093/cercor/bhl057
|
[46] | McLaughlin RJ, Floresco SB (2007) The role of different subregions of the basolateral amygdala in cue-induced reinstatement and extinction of food-seeking behavior. Neuroscience 146: 1484–1494. doi: 10.1016/j.neuroscience.2007.03.025
|
[47] | Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) All that glitters … dissociating attention and outcome expectancy from prediction errors signals. J Neurophysiol 104: 587–595. doi: 10.1152/jn.00173.2010
|
[48] | Dayan P, Daw ND (2008) Decision theory, reinforcement learning, and the brain. Cogn Affect Behav Neurosci 8: 429–453. doi: 10.3758/cabn.8.4.429
|
[49] | Orban G, Wolpert DM (2011) Representations of uncertainty in sensorimotor control. Curr Opin Neurobiol 21: 629–635. doi: 10.1016/j.conb.2011.05.026
|
[50] | Esber GR, Haselgrove M (2011) Reconciling the influence of predictiveness and uncertainty on stimulus salience: a model of attention in associative learning. Proc Biol Sci 278: 2553–2561. doi: 10.1098/rspb.2011.0836
|
[51] | Le Pelley ME (2004) The role of associative history in models of associative learning: a selective review and a hybrid model. Q J Exp Psychol B 57: 193–243. doi: 10.1080/02724990344000141
|
[52] | Doll BB, Hutchison KE, Frank MJ (2011) Dopaminergic genes predict individual differences in susceptibility to confirmation bias. J Neurosci 31: 6188–6198. doi: 10.1523/jneurosci.6486-10.2011
|
[53] | Li J, Delgado MR, Phelps EA (2011) How instructed knowledge modulates the neural systems of reward learning. Proc Natl Acad Sci U S A 108: 55–60. doi: 10.1073/pnas.1014938108
|