全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Where Taxonomy Based on Subtle Morphological Differences Is Perfectly Mirrored by Huge Genetic Distances: DNA Barcoding in Protura (Hexapoda)

DOI: 10.1371/journal.pone.0090653

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Protura is a group of tiny, primarily wingless hexapods living in soil habitats. Presently about 800 valid species are known. Diagnostic characters are very inconspicuous and difficult to recognize. Therefore taxonomic work constitutes an extraordinary challenge which requires special skills and experience. Aim of the present pilot project was to examine if DNA barcoding can be a useful additional approach for delimiting and determining proturan species. Methodology and Principal Findings The study was performed on 103 proturan specimens, collected primarily in Austria, with additional samples from China and Japan. The animals were examined with two markers, the DNA barcoding region of the mitochondrial COI gene and a fragment of the nuclear 28S rDNA (Divergent Domain 2 and 3). Due to the minuteness of Protura a modified non-destructive DNA-extraction method was used which enables subsequent species determination. Both markers separated the examined proturans into highly congruent well supported clusters. Species determination was performed without knowledge of the results of the molecular analyses. The investigated specimens comprise a total of 16 species belonging to 8 genera. Remarkably, morphological determination in all species exactly mirrors molecular clusters. The investigation revealed unusually huge genetic COI distances among the investigated proturans, both maximal intraspecific distances (0–21.3%), as well as maximal congeneric interspecifical distances (up to 44.7%). Conclusions The study clearly demonstrates that the tricky morphological taxonomy in Protura has a solid biological background and that accurate species delimitation is possible using both markers, COI and 28S rDNA. The fact that both molecular and morphological analyses can be performed on the same individual will be of great importance for the description of new species and offers a valuable new tool for biological and ecological studies, in which proturans have generally remained undetermined at species level.

References

[1]  Southwood TRE, Henderson PA (2000) Ecological methods with particular reference to the study of insect populations. 3rd ed., Wiley-Blackwell, Oxford. 592 pp.
[2]  Villani MG, Allee LL, Díaz A, Robbins PS (1999) Adaptive strategies of edaphic arthropods. Annu Rev Entomol 44: 233–256. doi: 10.1146/annurev.ento.44.1.233
[3]  Jinbo U, Kato T, Ito M (2011) Current progress in DNA barcoding and future implications for entomology. J Entomol Sci 14(2): 107–124. doi: 10.1111/j.1479-8298.2011.00449.x
[4]  Pass G, Szucsich NU (2011) 100 years of research on the Protura: many secrets still retained. Soil Organisms 83(3): 309–334.
[5]  Tichy H (1988) A kinematic study of front legs' movements in walking Protura (Insecta). The J of Exp Zool 245: 130–136. doi: 10.1002/jez.1402450203
[6]  Tuxen SL (1964): The Protura. A revision of the species of the world. With keys for determination. – Hermann, Paris, 360 pp.
[7]  Nosek J (1973) The European Protura. Their taxonomy, ecology and distribution with keys for determination. Muséum d'Histoire Naturelle, Genève, 346 pp.
[8]  Imadaté G (1974) Protura (Insecta). Fauna japonica. Keigaku Publishing Co.Tokyo, 351 pp.
[9]  Szeptycki A (1988) New genera and species of Protura from the Altai Mts. – Acta Zoologica Cracoviensia 31: 297–362.
[10]  Yin W-Y (1999) Arthropoda. Protura. – Fauna Sinica. Science Press, Beijing, XI+510 pp.
[11]  Grimaldi DA (2010) 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev 39: 191–203. doi: 10.1016/j.asd.2009.10.008
[12]  Dell'Ampio E, Szucsich NU, Pass G (2011) Protura and molecular phylogenetics: status quo of a young love. Soil Organisms 83(3): 347–358.
[13]  Bu Y, Gao Y, Luan YX, Yin WY (2012) Progress on the systematic study of basal Hexapoda. Chinese Bulletin of Life Sciences 24(2): 130–138.
[14]  Busse HJ, Denner EBM, Lubitz W (1996) Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol 47: 3–38. doi: 10.1016/0168-1656(96)01379-x
[15]  Blaxter M (2003) Counting angels with DNA. Nature 421: 122–124. doi: 10.1038/421122a
[16]  Hebert PDN, Cywinska A, Ball SL, de WaardJR (2003) Biological identifications through DNA barcodes. P Roy Soc Lond B, Bio 270: 313–321. doi: 10.1098/rspb.2002.2218
[17]  Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. P Roy Soc Lond B, Bio 270: 96–99. doi: 10.1098/rsbl.2003.0025
[18]  Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 101 (41): 14812–14817. doi: 10.1073/pnas.0406166101
[19]  Chen W J, Bu Y, Carapelli A, Dallai R, Li S, et al. (2011) The mitochondrial genome of Sinentomon erythranum (Arthropoda: Hexapoda: Protura): an example of highly divergent evolution. BMC Evol Biol 11 (1): e246. doi: 10.1186/1471-2148-11-246
[20]  Shao H, Zhang Y, Xie R, Yin W (1999) Mitochondrial cytochrome b sequences variation of Protura and molecular systematics of Apterygota. Chinese Sci Bull 44(22): 2031–2036. doi: 10.1007/bf02884915
[21]  Carapelli A, Frati F, Nardi F, Dallai R, Simon C (2000) Molecular phylogeny of the apterygotan insects based on nuclear and mitochondrial genes. Pedobiologia 44: 361–373. doi: 10.1078/s0031-4056(04)70055-4
[22]  Shrubovych J, Schneider C, D'Haese C (2012) Description of a new species of Acerentulus Berlese, 1908 (Protura: Acerentomata: Acerentomidae) with its barcode sequence and a key to the confinis group. Ann Soc Entomol Fr 48(1–2): 1–7. doi: 10.1080/00379271.2012.10697746
[23]  Bu Y, Wu D-H (2012) Revision of Chinese Yamatentomon, with description of one new species and redescription of Yamatentomon yamato (Protura: Acerentomata: Acerentomidae). Fla Entomol 95(4): 839–847. doi: 10.1653/024.095.0404
[24]  Bai Y, Bu Y (2013) Hesperentomon yangi sp. n. from Jiangsu Province, Eastern China, with analyses of DNA barcodes (Protura, Acerentomata, Hesperentomidae). ZooKeys 338: 29–37. doi: 10.3897/zookeys.338.6099
[25]  B?hm A, Bartel D, Szucsich NU, Pass G (2011) Confocal imaging of the exo- and endoskeleton of Protura after non-destructive DNA extraction. Soil Organisms 83(3): 335–345.
[26]  Christian E, Szeptycki A (2004) Distribution of Protura along an urban gradient in Vienna. Pedobiologia 48: 445–452. doi: 10.1016/j.pedobi.2004.05.009
[27]  Rusek J, Stumpp J (1989) Ionescuellum ulmiacum sp. n. from Central Europe (Protura, Hesperentomidae). Revue Ecol Biol Sol 26: 527–533.
[28]  Szeptycki A (1991) Polish Protura V. Genus Acerentulus Berlese, 1908 (Acerentomidae). Acta Zool Cracov 34(1): 1–64.
[29]  Szeptycki A, Christian E (2000) Two new Eosentomon species from Austria (Insecta: Protura: Eosentomidae). Ann Naturhist Mus Wien 102B: 83–92.
[30]  Dell'Ampio E, Szucsich NU, Carapelli A, Frati F, Steiner G, et al. (2009) Testing for misleading effects in the phylogenetic reconstruction of ancient lineages of hexapods: influence of character dependence and character choice in analyses of 28S rRNA sequences. Zool Scr 38(2): 155–170. doi: 10.1111/j.1463-6409.2008.00368.x
[31]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Oxford University Press; Nucleic Acids Symposium Series 41: 95–98.
[32]  Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5): 1792–1797. doi: 10.1093/nar/gkh340
[33]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[34]  Misof B, Misof K (2009) A Monte Carlo approach successfully identifies randomness of multiple sequence alignments: a more objective means of data exclusion. Syst Biol 58: 21–34.
[35]  Meier R, Kwong S, Vaidya G, Ng PKL (2006) DNA Barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55: 715–728.
[36]  Xia X, Xie Z (2001) DAMBE: Software package for data analysis in molecular biology and evolution. J Hered 92(4): 371–373. doi: 10.1093/jhered/92.4.371
[37]  Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primer for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5): 294–299.
[38]  Tuxen SL (1931) Monographie der Proturen. I. Morphologie. Nebst Bemerkungen über Systematik und ?kologie. Zeitschrift für Morphologie und ?kologie der Tiere 22(2-3): 671–720. doi: 10.1007/bf00446572
[39]  Szeptycki A (2007) Catalogue of the World Protura. Acta Zool Cracov, B – Invertebrata 50: 1–210.
[40]  Ionesco MA (1932) Quelques anomalies observées dans la chaetotaxie des Protoures. Publicatiunile Societatii Naturalistilor din Romania 11: 167–170.
[41]  Szeptycki A (1997) The present knowledge of Protura. Fragmenta Faunistica 40 (28): 307–311.
[42]  Szeptycki A (2000) The presence of additional abdominal legs in Acerentomon gallicum Ionesco, 1933 (Protura, Acerentomidae) – a teratological case. Folia biologica 48 (1–2): 65–66.
[43]  Vences M, Thomas M, Van der Meijden A, Chiari Y, Vieites DR (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers of Zoology 2(5): 1–12. doi: 10.1186/1742-9994-2-5
[44]  Vences M, Thomas M, Bonett RM, Vieites DR (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos T Roy Soc B 360(1462): 1859–1868. doi: 10.1098/rstb.2005.1717
[45]  Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst Biol 55(5): 715–728.
[46]  Kasapidis P, Magoulas A, Mylonas M, Zouros E (2005) The phylogeography of the gecko Cyrtopodion kotschyi (Reptilia: Gekkonidae) in the Aegean archipelago. Mol Phylogenet Evol 35: 612–623. doi: 10.1016/j.ympev.2005.02.005
[47]  Yin W (1996) New considerations on systematics of Protura. In: ‘Proceedings of the XX International Congress of Entomology’. 25–31 August, 1996. Firenze, Italy: 60.
[48]  Kaneko N, Minamiya Y, Nakamura O, Saito M, Hashimoto M (2012) Species assemblage and biogeography of Japanese Protura (Hexapoda) in forest soils. Diversity 4: 318–333. doi: 10.3390/d4030318
[49]  Balkenhol B (1996) Activity range and dispersal of the Protura Acerentomon nemorale (Arthropoda: Insecta). Pedobiologia 40(3): 212–216.
[50]  Dunger W, Schulz HJ, Zimdars B (2002) Colonization behavior of Collembola under different conditions of dispersal. Pedobiologia 46: 316–327. doi: 10.1078/0031-4056-00139
[51]  Coulson SJ, Hodkinson ID, Webb NR, Harrison JA (2002) Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Funct Ecol 16(3): 353–356. doi: 10.1046/j.1365-2435.2002.00636.x
[52]  Sturm H, Machida R (2001) Archaeognatha In: Handbook of Zoology, Vol. IV (Arthropoda: Insecta), Kristensen NP (ed.), Part 37 Archaeognatha. Berlin: de Gruyter. 213pp.
[53]  Marx MT, Wild AK, Knollmann U, Kamp G, Wegener G, et al. (2009) Responses and adaptations of collembolan communities (Hexapoda: Collembola) to flooding and hypoxic conditions. Pesqi Agropecu Bras 44(8): 1002–1010. doi: 10.1590/s0100-204x2009000800032
[54]  Rimsky-Korsakow M (1911) Zur geographischen Verbreitung und Biologie der Proturen. Russkoe entomologicheskoe Obozrenie 11: 411–417.
[55]  Sterzynska M, Orlov O, Shrubovych J (2012) Effect of hydrologic disturbance regimes on Protura variability in a river floodplain. Ann Zool Fenn 49 (5–6): 309–320. doi: 10.5735/086.049.0504
[56]  Wiens JJ, Penkrot TA (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51(1): 69–91.
[57]  Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of Birds through DNA Barcodes. PLoS Biol 2(10): e312. doi: 10.1371/journal.pbio.0020312
[58]  Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83(3): 481–491. doi: 10.1139/z05-024
[59]  Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3(12): e422. doi: 10.1371/journal.pbio.0030422
[60]  Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology 4: 8. doi: 10.1186/1742-9994-4-8
[61]  Moritz C, Cicero C (2004) DNA barcoding: Promise and pitfalls. PLoS Biology 2(10): e354. doi: 10.1371/journal.pbio.0020354
[62]  Roe AD, Sperling FAH (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Mol Phylogenet Evol 44(1): 325–345. doi: 10.1016/j.ympev.2006.12.005
[63]  Rubinoff D, Holland BS (2005) Between two extremes: mitochondrial DNA is neither the Panacea nor the Nemesis of phylogenetic and taxonomic inference. Syst Biol 54(6): 952–961.
[64]  Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, et al. (2010) Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology 7: 26. doi: 10.1186/1742-9994-7-26
[65]  Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Q Rev Biol 66(4): 411–453. doi: 10.1086/417338
[66]  Ali AB, Wuyts J, de Wachter R, Meyer A, van de Peer Y (1999) Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucl Acids Res 27(14): 2825–2831. doi: 10.1093/nar/27.14.2825
[67]  Luan YX, Mallat JM, Xie RD, Yang YM, Yin WY (2005) The phylogenetic positions of three basal-hexapod groups (Protura, Diplura, and Collembola) based on ribosomal RNA gene sequences. Mol Biol Evol 22(7): 1579–1592. doi: 10.1093/molbev/msi148
[68]  Mallat J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40: 772–794. doi: 10.1016/j.ympev.2006.04.021
[69]  Gao Y, Bu Y, Luan YX (2008) Phylogenetic relationships of basal hexapods reconstructed from nearly complete 18S and 28S rRNA gene sequences. Zool Sci 25: 1139–1145. doi: 10.2108/zsj.25.1139
[70]  Kjer KM (2004) Aligned 18S and Insect Phylogeny. Syst Biol 53(3): 506–514.
[71]  Chu KH, Li CP, Qi J (2006) Ribosomal RNA as molecular barcodes: a simple correlation analysis without sequence alignment. Bioinformatics 22 (14): 1690–1701. doi: 10.1093/bioinformatics/btl146
[72]  Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7(4): 544–548. doi: 10.1111/j.1471-8286.2007.01748.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133