全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genetic Evidence Confirms Polygamous Mating System in a Crustacean Parasite with Multiple Hosts

DOI: 10.1371/journal.pone.0090680

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mating systems are diverse in animals, notably in crustaceans, but can be inferred from a limited set of parameters. Baeza and Thiel (2007) proposed a model predicting mating systems of symbiotic crustaceans with three host characteristics and the risk of predation. These authors proposed five mating systems, ranging from monogamy to polygynandry (where multiple mating occurs for both genders). Using microsatellite loci, we tested the putatively mating system of the ectoparasite crab Dissodactylus primitivus. We determined the mating frequencies of males and females, parentage assignment (COLONY & GERUD software) as well as the contents of female spermathecae. Our results are globally consistent with the model of Baeza and Thiel and showed, together with previous aquarium experiments, that this ectoparasite evolved a polygamous mating system where males and females move between hosts for mate search. Parentage analyses revealed that polyandry is frequent and concerns more than 60% of clutches, with clutches being fertilized by up to 6 different fathers. Polygyny is supported by the detection of eight males having sired two different broods. We also detected a significant paternity skew in 92% of the multipaternal broods. Moreover, this skew is probably higher than the estimation from the brood because additional alleles were detected in most of spermathecae. This high skew could be explained by several factors as sperm competition or cryptic female choice. Our genetic data, combined with previous anatomic analyses, provide consistent arguments to suggest sperm precedence in D. primitivus.

References

[1]  Emlen ST, Oring LW (1977) Ecology, sexual selection and the evolution of mating systems. Science 197: 215–223. doi: 10.1126/science.327542
[2]  Shuster SM, Wade MJ (2003) Mating Systems and Strategies. Princeton: Princeton University Press. 552 p.
[3]  Baeza JA, Thiel M (2007) The mating system of symbiotic crustaceans: a conceptual model based on optimality and ecological constraints. In: Duffy JE, Thiel M, editors. Evolutionary ecology of social and sexual systems. Crustaceans as model organisms. Oxford, England: Oxford University Press. pp. 249–267.
[4]  Ross DM (1983) Symbiotic relations. In: Vernberg SJ, Vernberg WB, editors. The biology of Crustacea 7 . Walham: Academic Press. 314 p.
[5]  Thiel M, Baeza JA (2001) Factors affecting the social behaviour of symbiotic Crustacea: a modelling approach. Symbiosis 30: 163–190.
[6]  Sainte-Marie B (2007) Sperm Demand and Allocation in Decapod Crustaceans. In: Duffy JE, Thiel M, editors. Evolutionary ecology of social and sexual systems. Crustaceans as model organisms. Oxford: Oxford University Press. pp. 191–210.
[7]  Vogt G (2013) Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda. Biol Rev 88(1): 81–116. doi: 10.1111/j.1469-185x.2012.00241.x
[8]  Streiff R, Mira S, Castro M, Cancela ML (2004) Multiple paternity in Norway lobster (Nephrops norvegicus L.) assessed with microsatellite markers. Mar Biotechnol 6(1): 60–6. doi: 10.1007/s10126-003-0015-7
[9]  McKeown N, Shaw P (2008) Single paternity within broods of the brown crab Cancer pagurus: a highly fecund species with long-term sperm storage. Mar Ecol Prog Ser 368: 209–215. doi: 10.3354/meps07634
[10]  Baggio R, Pil MW, Boeger W, Patella L, Ostrensky A, et al. (2011) Genetic evidence for multiple paternity in the mangrove land crab Ucides cordatus (Decapoda: Ocypodidae). Mar Biol Res 7(5): 520–524. doi: 10.1080/17451000.2010.528771
[11]  De Bruyn C, Rigaud T, David B, De Ridder C (2009) Symbiosis between the pea crab Dissodactylus primitivus and its echinoid host Meoma ventricosa: potential consequences for the crab mating system. Mar Ecol Prog Ser 375: 173–183. doi: 10.3354/meps07733
[12]  Baeza JA (2008) Social monogamy in the shrimp Pontonia margarita, a symbiont of Pinctada mazatlanica, off the pacific coast of panama. Mar Biol 153(3): 387–395. doi: 10.1007/s00227-007-0815-9
[13]  De Bruyn C, David B, De Ridder C, Rigaud T (2010) Asymmetric exploitation of two echinoid host species by a parasitic pea crab and its consequences for the parasitic life cycle. Mar Ecol Prog Ser 398: 183–191. doi: 10.3354/meps08315
[14]  Caulier G, Parmentier E, Lepoint G, Van Nedervelde F, Eeckhaut I (2012) Characterization of a population of the Harlequin crab, Lissocarcinus orbicularis Dana, 1852, an obligate symbiont of holothuroids, in Toliara bay (Madagascar). In Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms; 2010/10/2-9; G?ttingen. Germany: Zoosymposia Kroh A, Reich M, editors. 7: pp.177–183.
[15]  Ocampo EH, Nu?ez JD, Cledón M, Baeza JA (2012) Host-specific reproductive benefits, host selection behavior and host use pattern of the pinnotherid crab Calyptrae otheresgarthi. J Exp Mar Biol Ecol 429: 36–46. doi: 10.1016/j.jembe.2012.06.009
[16]  Baeza JA, Ritson-Williams R, Fuentes MS (2013) Sexual and mating system in a caridean shrimp symbiotic with the winged pearl oyster in the Coral Triangle. J Zool 289: 172–181. doi: 10.1111/j.1469-7998.2012.00974.x
[17]  Angeloni L, Bradbury JW, Burton RS (2003) Multiple mating, paternity, and body size in a simultaneous hermaphrodite, Aplysia californica. Behav Ecol 14(4): 554–560. doi: 10.1093/beheco/arg033
[18]  Yue GH, Chang A (2010) Molecular evidence for high frequency of multiple paternity in a freshwater shrimp species Caridina ensifera. PLOS ONE 5(9): e12721. doi: 10.1371/journal.pone.0012721
[19]  Avise JC, Tatarenkov A, Liu JX (2011) Multiple mating and clutch size in invertebrate brooders versus pregnant vertebrates. Proc Natl Acad Sci USA 108(28): 11512–11517. doi: 10.1073/pnas.1109216108
[20]  Telford M (1982) Echinoderm spine structure, feeding and host relationships of four species of Dissodactylus (Brachyura: Pinnotheridae). Bull Mar Sci 32: 584–594.
[21]  Hendler G, Miller JE, Pawson DL, Kier PM (1995) Sea stars, sea urchins, and allies. Echinoderms of Florida and the Caribbean. Washington: Smithsonian Institution Press. 390 p.
[22]  Jossart Q, David B, De Bruyn C, De Ridder C, Rigaud T, et al. (2013) No evidence of host specialization in a parasitic pea-crab exploiting two echinoid hosts. Mar Ecol Prog Ser 475: 167–176. doi: 10.3354/meps10131
[23]  Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506–513.
[24]  Anderson CM, Aparicio GJ, Atangana AR, Beaulieu J, Bruford MW, et al. (2010) Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009-31 January 2010. Mol Ecol Notes 10: 576–579. doi: 10.1111/j.1755-0998.2010.02851.x
[25]  Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, et al. (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11: 591–611. doi: 10.1111/j.1755-0998.2011.03014.x
[26]  Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486.
[27]  Marshall TC, Slate J, Kruuk L, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5): 639–665. doi: 10.1046/j.1365-294x.1998.00374.x
[28]  Jones AG (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol Ecol Notes 5: 708–711. doi: 10.1111/j.1471-8286.2005.01029.x
[29]  Neff B, Pitcher T (2002) Assessing the statistical power of genetic analyses to detect multiple mating in fishes. J Fish Biol 61(3): 739–750. doi: 10.1111/j.1095-8649.2002.tb00908.x
[30]  Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10(3): 551–5. doi: 10.1111/j.1755-0998.2009.02787.x
[31]  Karaket T, Poompuang S (2012) CERVUS vs. COLONY for successful parentage and sibship determinations in freshwater prawn Macrobrachium rosenbergii de Man. Aquaculture 324–325: 307–311. doi: 10.1016/j.aquaculture.2011.10.045
[32]  McDonald JH. (2009) Handbook of Biological Statistics. Baltimore: Sparky House Publishing. 319 p.
[33]  Pamilo P, Crozier RH (1996) Reproductive skew simplified. Oikos 75: 533–535. doi: 10.2307/3545895
[34]  Pearcy M, Timmermans I, Allard D, Aron S (2009) Multiple mating in the ant Cataglyphis cursor: testing the sperm limitation and the diploid male load hypotheses. Insect Soc 56(1): 94–102. doi: 10.1007/s00040-008-1043-0
[35]  Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273. doi: 10.1073/pnas.76.10.5269
[36]  Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite Data. Mol Ecol Notes 4(3): 535–538. doi: 10.1111/j.1471-8286.2004.00684.x
[37]  Yue GH, Li JL, Wang CM, Xia JH, Wang GL, et al. (2010) High prevalence of multiple paternity in the invasive crayfish species, Procambarus clarkii. Int J Biol Sci 6(1): 107–15. doi: 10.7150/ijbs.6.107
[38]  Bailie D, Hynes R, Prod?hl P (2011) Genetic parentage in the squat lobsters Munida rugosa and M. sarsi (Crustacea, Anomura, Galatheidae). Mar Ecol Prog Ser 421: 173–182. doi: 10.3354/meps08895
[39]  Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45: 525–567. doi: 10.1111/j.1469-185x.1970.tb01176.x
[40]  Eberhard WG (1991) Copulatory courtship and cryptic female choice in insects. Biol Rev 66: 1–31. doi: 10.1111/j.1469-185x.1991.tb01133.x
[41]  Arnaud L (1999) La compétition spermatique chez les insectes: les stratégies d'assurance de la paternité et la préséance du sperme. Biotechnol Agron Soc 3(2): 86–103.
[42]  Bretman A, Wedell N, Tregenza T (2004) Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proc R Soc Lond B Bio 271: 159–164. doi: 10.1098/rspb.2003.2563
[43]  Pohle G, Telford M (1981) The larval development of Dissodactylus crinitichelis Moreira, 1901 (Brachyura: Pinnotheridae) in laboratory culture. Bull Mar Sci 31: 753–773.
[44]  Bell JL, Stancyk SE (1983) Population dynamics and reproduction of Dissodactylus mellitae (Brachyura: Pinnotheridae) on its sand dollar host Mellita quinquiesperforata (Echinodermata). Mar Ecol Prog Ser 13: 141–149. doi: 10.3354/meps013141
[45]  Becker C, Brandis D, Storch V (2011) Morphology of the female reproductive system of European pea crabs (Crustacea, Decapoda, Brachyura, Pinnotheridae). J Morphol 272(1): 12–26. doi: 10.1002/jmor.10884
[46]  Jensen PC, Orensanz JM, Armstrong DA (1996) Structure of the female reproductive tract in the dungeness crab (Cancer magister) and implications for the mating system. Biol Bull 190(3): 336–349. doi: 10.2307/1543026
[47]  Takami Y (2007) Spermatophore displacement and male fertilization success in the ground beetle Carabus insulicola. Behav Ecol 18(3): 628–634. doi: 10.1093/beheco/arm022
[48]  Urbani N, Sainte-Marie B, Sévigny JM, Zadworny D, Kuhnlein U (1998) Sperm competition and paternity assurance during the first breeding period of female snow crab (Chionoecetes opilio) (Brachyura: Majidae). Can J Fish Aquat Sci 55(5): 1104–1113. doi: 10.1139/cjfas-55-5-1104
[49]  Sainte-Marie G, Sainte-Marie B, Sevigny JM (2000) Ejaculate-storage patterns and the site of fertilization in female snow crabs (Chionoecetes opilio; Brachyura, Majidae). Can J Zool 78: 1902–1917. doi: 10.1139/z00-144
[50]  Moreau J, Seguin S, Caubet Y, Rigaud T (2002) Female remating and sperm competition patterns in a terrestrial crustacean. Anim Behav 64: 569–577. doi: 10.1006/anbe.2002.4000
[51]  Shuster SM, Briggs WR, Dennis PA (2013) How multiple mating by females affects sexual selection. Phil Trans R Soc B 368: 20120046. doi: 10.1098/rstb.2012.0046

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133