全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Characterization of Nuclear Localization and SUMOylation of the ATBF1 Transcription Factor in Epithelial Cells

DOI: 10.1371/journal.pone.0092746

Full-Text   Cite this paper   Add to My Lib

Abstract:

ATBF1/ZFHX3 is a large transcription factor that functions in development, tumorigenesis and other biological processes. ATBF1 is normally localized in the nucleus, but is often mislocalized in the cytoplasm in cancer cells. The mechanism underlying the mislocalization of ATBF1 is unknown. In this study, we analyzed the nuclear localization of ATBF1, and found that ectopically expressed ATBF1 formed nuclear body (NB)-like dots in the nucleus, some of which indeed physically associated with promyelocytic leukemia (PML) NBs. We also defined a 3-amino acid motif, KRK2615-2617, as the nuclear localization signal (NLS) for ATBF1. Interestingly, diffusely distributed nuclear SUMO1 proteins were sequestered into ATBF1 dots, which could be related to ATBF1's physical association with PML NBs, known SUMOylation hotspots. Furthermore, ATBF1 itself was SUMOylated. ATBF1 SUMOylation occurred at more than 3 lysine residues including K2349, K2806 and K3258 and was nuclear specific. Finally, the PIAS3 SUMO1 E3 ligase, which interacts with ATBF1 directly, diminished rather than enhanced ATBF1 SUMOylation, preventing the co-localization of ATBF1 with SUMO1 in the nucleus. These findings suggest that nuclear localization and SUMOylation are important for the transcription factor function of ATBF1, and that ATBF1 could cooperate with PML NBs to regulate protein SUMOylation in different biological processes.

References

[1]  Miura Y, Tam T, Ido A, Morinaga T, Miki T, et al. (1995) Cloning and characterization of an ATBF1 isoform that expresses in a neuronal differentiation-dependent manner. J Biol Chem 270: 26840–26848. doi: 10.1074/jbc.270.45.26840
[2]  Sun X, Fu X, Li J, Xing C, Martin DW, et al. (2012) Heterozygous deletion of Atbf1 by the Cre-loxP system in mice causes preweaning mortality. Genesis 50: 819–827. doi: 10.1002/dvg.22041
[3]  Li M, Fu X, Ma G, Sun X, Dong X, et al. (2012) Atbf1 regulates pubertal mammary gland development likely by inhibiting the pro-proliferative function of estrogen-ER signaling. PLoS One 7: e51283. doi: 10.1371/journal.pone.0051283
[4]  Watanabe M, Miura Y, Ido A, Sakai M, Nishi S, et al. (1996) Developmental changes in expression of the ATBF1 transcription factor gene. Brain Res Mol Brain Res 42: 344–349. doi: 10.1016/s0169-328x(96)00204-5
[5]  Jung CG, Kim HJ, Kawaguchi M, Khanna KK, Hida H, et al. (2005) Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation. Development 132: 5137–5145. doi: 10.1242/dev.02098
[6]  Ishii Y, Kawaguchi M, Takagawa K, Oya T, Nogami S, et al. (2003) ATBF1-A protein, but not ATBF1-B, is preferentially expressed in developing rat brain. J Comp Neurol 465: 57–71. doi: 10.1002/cne.10807
[7]  Jung CG, Uhm KO, Miura Y, Hosono T, Horike H, et al. (2011) Beta-amyloid increases the expression level of ATBF1 responsible for death in cultured cortical neurons. Mol Neurodegener 6: 47. doi: 10.1186/1750-1326-6-47
[8]  Kim TS, Kawaguchi M, Suzuki M, Jung CG, Asai K, et al. (2010) The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress. Dis Model Mech 3: 752–762.
[9]  Sun X, Frierson HF, Chen C, Li C, Ran Q, et al. (2005) Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet 37: 407–412. doi: 10.1038/ng1528
[10]  Sun X, Li J, Sica G, Fan SQ, Wang Y, et al. (2013) Interruption of nuclear localization of ATBF1 during the histopathologic progression of head and neck squamous cell carcinoma. Head Neck 35: 1007–1014. doi: 10.1002/hed.23077
[11]  Burgner D, Davila S, Breunis WB, Ng SB, Li Y, et al. (2009) A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet 5: e1000319. doi: 10.1371/journal.pgen.1000319
[12]  Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, et al. (2009) Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 41: 879–881. doi: 10.1038/ng.416
[13]  Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, et al. (2009) A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet 41: 876–878. doi: 10.1038/ng.417
[14]  Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, et al. (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487: 239–243. doi: 10.1038/nature11125
[15]  Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, et al. (2005) ATBF1-A messenger RNA expression is correlated with better prognosis in breast cancer. Clin Cancer Res 11: 193–198.
[16]  Cho YG, Song JH, Kim CJ, Lee YS, Kim SY, et al. (2007) Genetic alterations of the ATBF1 gene in gastric cancer. Clin Cancer Res 13: 4355–4359. doi: 10.1158/1078-0432.ccr-07-0619
[17]  Kim CJ, Song JH, Cho YG, Cao Z, Lee YS, et al. (2008) Down-regulation of ATBF1 is a major inactivating mechanism in hepatocellular carcinoma. Histopathology 52: 552–559. doi: 10.1111/j.1365-2559.2008.02980.x
[18]  Sun X, Zhou Y, Otto KB, Wang M, Chen C, et al. (2007) Infrequent mutation of ATBF1 in human breast cancer. J Cancer Res Clin Oncol 133: 103–105. doi: 10.1007/s00432-006-0148-y
[19]  Mabuchi M, Kataoka H, Miura Y, Kim TS, Kawaguchi M, et al. (2010) Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochemical and Biophysical Research Communications 398: 321–325. doi: 10.1016/j.bbrc.2010.06.090
[20]  Morinaga T, Yasuda H, Hashimoto T, Higashio K, Tamaoki T (1991) A human alpha-fetoprotein enhancer-binding protein, ATBF1, contains four homeodomains and seventeen zinc fingers. Mol Cell Biol 11: 6041–6049.
[21]  Dong XY, Sun X, Guo P, Li Q, Sasahara M, et al. (2010) ATBF1 inhibits ER function by selectively competing with AIB1 for binding to ER in ER-positive breast cancer cells. J Biol Chem 285: 32801–32809. doi: 10.1074/jbc.m110.128330
[22]  Qi Y, Ranish JA, Zhu X, Krones A, Zhang J, et al. (2008) Atbf1 is required for the Pit1 gene early activation. Proc Natl Acad Sci U S A 105: 2481–2486. doi: 10.1073/pnas.0712196105
[23]  Berry FB, Miura Y, Mihara K, Kaspar P, Sakata N, et al. (2001) Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem 276: 25057–25065. doi: 10.1074/jbc.m010378200
[24]  Kataoka H, Joh T, Miura Y, Tamaoki T, Senoo K, et al. (2000) AT motif binding factor 1-A (ATBF1-A) negatively regulates transcription of the aminopeptidase N gene in the crypt-villus axis of small intestine. Biochem Biophys Res Commun 267: 91–95. doi: 10.1006/bbrc.1999.1911
[25]  Kocer B, Soran A, Kiyak G, Erdogan S, Eroglu A, et al. (2004) Prognostic significance of mucin expression in gastric carcinoma. Dig Dis Sci 49: 954–964. doi: 10.1023/b:ddas.0000034554.96191.66
[26]  Mori Y, Kataoka H, Miura Y, Kawaguchi M, Kubota E, et al. (2007) Subcellular localization of ATBF1 regulates MUC5AC transcription in gastric cancer. Int J Cancer 121: 241–247. doi: 10.1002/ijc.22654
[27]  Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166. doi: 10.1126/science.1140321
[28]  Zhang S, Kim TS, Dong Y, Kanazawa S, Kawaguchi M, et al. (2012) AT motif binding factor 1 (ATBF1) is highly phosphorylated in embryonic brain and protected from cleavage by calpain-1. Biochem Biophys Res Commun 427: 537–541. doi: 10.1016/j.bbrc.2012.09.092
[29]  Dong XY, Fu X, Fan S, Guo P, Su D, et al. (2012) Oestrogen causes ATBF1 protein degradation through the oestrogen-responsive E3 ubiquitin ligase EFP. Biochem J 444: 581–590. doi: 10.1042/bj20111890
[30]  Xu J, Sauvageot J, Ewing CM, Sun J, Liu W, et al. (2006) Germline ATBF1 mutations and prostate cancer risk. Prostate 66: 1082–1085. doi: 10.1002/pros.20430
[31]  Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2: 924–932. doi: 10.1038/nprot.2007.132
[32]  Zimber A, Nguyen QD, Gespach C (2004) Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 16: 1085–1104. doi: 10.1016/j.cellsig.2004.03.020
[33]  Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2: a000661. doi: 10.1101/cshperspect.a000661
[34]  rand P, Lenser T, Hemmerich P (2010) Assembly dynamics of PML nuclear bodies in living cells. PMC Biophys 3: 3. doi: 10.1186/1757-5036-3-3
[35]  Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24: 331–339. doi: 10.1016/j.molcel.2006.09.013
[36]  Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO J 22: 2047–2059. doi: 10.1093/emboj/cdg204
[37]  Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24: 341–354. doi: 10.1016/j.molcel.2006.10.019
[38]  Nojiri S, Joh T, Miura Y, Sakata N, Nomura T, et al. (2004) ATBF1 enhances the suppression of STAT3 signaling by interaction with PIAS3. Biochem Biophys Res Commun 314: 97–103. doi: 10.1016/j.bbrc.2003.12.054
[39]  Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956. doi: 10.1038/nrm2293
[40]  Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82: 357–385. doi: 10.1146/annurev-biochem-061909-093311
[41]  Li M, Zhao D, Ma G, Zhang B, Fu X, et al. (2012) Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Biochem Biophys Res Commun 430: 358–363. doi: 10.1016/j.bbrc.2012.11.009
[42]  Kaspar P, Dvorakova M, Kralova J, Pajer P, Kozmik Z, et al. (1999) Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. J Biol Chem 274: 14422–14428. doi: 10.1074/jbc.274.20.14422
[43]  Van Damme E, Laukens K, Dang TH, Van Ostade X (2010) A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6: 51–67. doi: 10.7150/ijbs.6.51
[44]  Delaune A, Corbiere C, Benjelloun FD, Legrand E, Vannier JP, et al. (2008) Promyelocytic leukemia-nuclear body formation is an early event leading to retinoic acid-induced differentiation of neuroblastoma cells. J Neurochem 104: 89–99. doi: 10.1111/j.1471-4159.2007.05019.x
[45]  Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121: 4106–4113. doi: 10.1242/jcs.038570
[46]  Dahle O, Bakke O, Gabrielsen OS (2004) c-Myb associates with PML in nuclear bodies in hematopoietic cells. Exp Cell Res 297: 118–126. doi: 10.1016/j.yexcr.2004.03.014
[47]  Jang MS, Ryu SW, Kim E (2002) Modification of Daxx by small ubiquitin-related modifier-1. Biochem Biophys Res Commun 295: 495–500. doi: 10.1016/s0006-291x(02)00699-x
[48]  Lin X, Liang M, Liang YY, Brunicardi FC, Feng XH (2003) SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278: 31043–31048. doi: 10.1074/jbc.c300112200
[49]  Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, et al. (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100: 986–991. doi: 10.1073/pnas.0337412100
[50]  Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135–141. doi: 10.1038/nature00991

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133