全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

DOI: 10.1371/journal.pone.0092873

Full-Text   Cite this paper   Add to My Lib

Abstract:

The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution.

References

[1]  Castoe TA, de Koning AP, Kim HM, Gu W, Noonan BP, et al. (2009) Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci U S A 106: 8986–8991. doi: 10.1073/pnas.0900233106
[2]  Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, et al. (2010) Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci U S A 107: 8666–8671. doi: 10.1073/pnas.0912613107
[3]  Jin W, Wu DD, Zhang X, Irwin DM, Zhang YP (2012) Positive Selection on the Gene RNASEL: Correlation between Patterns of Evolution and Function. Mol Biol Evol 29: 3161–3168. doi: 10.1093/molbev/mss123
[4]  Fujisawa-Sehara A (2000) Development and regeneration of skeletal muscle. Tanpakushitsu Kakusan Koso 45: 2228–2234.
[5]  Buckingham M (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11: 440–448. doi: 10.1016/s0959-437x(00)00215-x
[6]  Buckingham M, Vincent SD (2009) Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 19: 444–453. doi: 10.1016/j.gde.2009.08.001
[7]  Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16: 585–595. doi: 10.1016/j.semcdb.2005.07.006
[8]  Parker MH, Seale P, Rudnicki MA (2003) Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4: 497–507. doi: 10.1038/nrg1109
[9]  Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9: 632–646. doi: 10.1038/nrg2369
[10]  Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4..
[11]  Kablar B, Asakura A, Krastel K, Ying C, May LL, et al. (1998) MyoD and Myf-5 define the specification of musculature of distinct embryonic origin. Biochem Cell Biol 76: 1079–1091. doi: 10.1139/bcb-76-6-1079
[12]  Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6: 715–722. doi: 10.1016/s0959-437x(96)80026-8
[13]  Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11: 699–704. doi: 10.1016/s0955-0674(99)00039-3
[14]  Atchley WR, Fitch WM, Bronner-Fraser M (1994) Molecular evolution of the MyoD family of transcription factors. Proc Natl Acad Sci U S A 91: 11522–11526. doi: 10.1073/pnas.91.24.11522
[15]  Yuan J, Zhang S, Liu Z, Luan Z, Hu G (2003) Cloning and phylogenetic analysis of an amphioxus myogenic bHLH gene AmphiMDF. Biochem Biophys Res Commun 301: 960–967. doi: 10.1016/s0006-291x(03)00081-0
[16]  Krause M, Fire A, Harrison SW, Priess J, Weintraub H (1990) CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell 63: 907–919. doi: 10.1016/0092-8674(90)90494-y
[17]  Venuti JM, Goldberg L, Chakraborty T, Olson EN, Klein WH (1991) A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells. Proc Natl Acad Sci U S A 88: 6219–6223. doi: 10.1073/pnas.88.14.6219
[18]  Michelson AM, Abmayr SM, Bate M, Arias AM, Maniatis T (1990) Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Genes Dev 4: 2086–2097. doi: 10.1101/gad.4.12a.2086
[19]  Meedel TH, Farmer SC, Lee JJ (1997) The single MyoD family gene of Ciona intestinalis encodes two differentially expressed proteins: implications for the evolution of chordate muscle gene regulation. Development 124: 1711–1721.
[20]  Araki I, Terazawa K, Satoh N (1996) Duplication of an amphioxus myogenic bHLH gene is independent of vertebrate myogenic bHLH gene duplication. Gene 171: 231–236. doi: 10.1016/0378-1119(96)00174-6
[21]  Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3: 838–849. doi: 10.1038/nrg929
[22]  Schubert M, Meulemans D, Bronner-Fraser M, Holland LZ, Holland ND (2003) Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2). Gene Expr Patterns 3: 199–202. doi: 10.1016/s1567-133x(02)00099-6
[23]  Urano A, Suzuki MM, Zhang P, Satoh N, Satoh G (2003) Expression of muscle-related genes and two MyoD genes during amphioxus notochord development. Evol Dev 5: 447–458. doi: 10.1046/j.1525-142x.2003.03051.x
[24]  Meedel TH, Lee JJ, Whittaker JR (2002) Muscle development and lineage-specific expression of CiMDF, the MyoD-family gene of Ciona intestinalis. Dev Biol 241: 238–246. doi: 10.1006/dbio.2001.0511
[25]  Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dev Suppl: 125–133.
[26]  Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, et al. (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: D225–229. doi: 10.1093/nar/gkq1189
[27]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088
[28]  Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15: 568–573. doi: 10.1093/oxfordjournals.molbev.a025957
[29]  Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–43. doi: 10.1093/oxfordjournals.molbev.a026236
[30]  Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19: 908–917. doi: 10.1093/oxfordjournals.molbev.a004148
[31]  Gu X, Vander Velden K (2002) DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 18: 500–501. doi: 10.1093/bioinformatics/18.3.500
[32]  Swanson WJ, Yang Z, Wolfner MF, Aquadro CF (2001) Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci U S A 98: 2509–2514. doi: 10.1073/pnas.051605998
[33]  Clark NL, Swanson WJ (2005) Pervasive adaptive evolution in primate seminal proteins. PLoS Genet 1: e35. doi: 10.1371/journal.pgen.0010035
[34]  Zhao X, Mo D, Li A, Gong W, Xiao S, et al. (2011) Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One 6: e19774. doi: 10.1371/journal.pone.0019774
[35]  Meedel TH, Chang P, Yasuo H (2007) Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF. Dev Biol 302: 333–344. doi: 10.1016/j.ydbio.2007.09.048
[36]  Yokoyama S, Asahara H (2011) The myogenic transcriptional network. Cell Mol Life Sci 68: 1843–1849. doi: 10.1007/s00018-011-0629-2
[37]  Mok GF, Sweetman D (2011) Many routes to the same destination: lessons from skeletal muscle development. Reproduction 141: 301–312. doi: 10.1530/rep-10-0394
[38]  Koumans JTM, Akster HA (1995) Myogenic cells in development and growth of fish. Comparative Biochemistry and Physiology Part A: Physiology 110: 3–20. doi: 10.1016/0300-9629(94)00150-r
[39]  Rescan PY (2001) Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol 130: 1–12. doi: 10.1016/s1096-4959(01)00412-2
[40]  Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, et al. (2012) Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. Dev Dyn 241: 995–1007. doi: 10.1002/dvdy.23780
[41]  Innocenzi A, Latella L, Messina G, Simonatto M, Marullo F, et al. (2011) An evolutionarily acquired genotoxic response discriminates MyoD from Myf5, and differentially regulates hypaxial and epaxial myogenesis. EMBO Rep 12: 164–171. doi: 10.1038/embor.2010.195
[42]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[43]  Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46: 409–418. doi: 10.1007/pl00006320
[44]  Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371. doi: 10.1038/nprot.2009.2
[45]  Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20: 374. doi: 10.1016/s0968-0004(00)89080-5
[46]  Goodsell DS (2005) Representing structural information with RasMol. Curr Protoc Bioinformatics Chapter 5: Unit 5 4.
[47]  Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16: 1664–1674. doi: 10.1093/oxfordjournals.molbev.a026080
[48]  Gu X (2001) Maximum-likelihood approach for gene family evolution under functional divergence. Mol Biol Evol 18: 453–464. doi: 10.1093/oxfordjournals.molbev.a003824

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133