Casein kinase 2 (protein kinase CK2) is a conserved eukaryotic serine/theronine kinase with multiple substrates and roles in the regulation of cellular processes such as cellular stress, cell proliferation and apoptosis. Here we report a detailed analysis of the Plasmodium falciparum CK2, PfCK2, demonstrating that this kinase, like the mammalian orthologue, is a dual specificity kinase able to phosphorylate at both serine and tyrosine. However, unlike the human orthologue that is auto-phosphorylated on tyrosine within the activation loop, PfCK2 shows no activation loop auto-phosphorylation but rather is auto-phosphorylated at threonine 63 within subdomain I. Phosphorylation at this site in PfCK2 is shown here to regulate the intrinsic kinase activity of PfCK2. Furthermore, we generate an homology model of PfCK2 in complex with the known selective protein kinase CK2 inhibitor, quinalizarin, and in so doing identify key co-ordinating residues in the ATP binding pocket that could aid in designing selective inhibitors to PfCK2.
References
[1]
Johnson LN (2009) Protein kinase inhibitors: contributions from structure to clinical compounds. Q Rev Biophys 42: 1–40. doi: 10.1017/s0033583508004745
[2]
Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9: 28–39. doi: 10.1038/nrc2559
[3]
Lucet IS, Tobin A, Drewry D, Wilks AF, Doerig C (2012) Plasmodium kinases as targets for new-generation antimalarials. Future medicinal chemistry 4: 2295–2310. doi: 10.4155/fmc.12.183
[4]
Talevich E, Tobin AB, Kannan N, Doerig C (2012) An evolutionary perspective on the kinome of malaria parasites. Philosophical transactions of the Royal Society of London Series B, Biological sciences 367: 2607–2618. doi: 10.1098/rstb.2012.0014
[5]
Ward P, Equinet L, Packer J, Doerig C (2004) Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC genomics 5: 79. doi: 10.1186/1471-2164-5-79
[6]
Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17: 349–368. doi: 10.1096/fj.02-0473rev
[7]
Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. The Biochemical journal 369: 1–15. doi: 10.1042/bj20021469
[8]
Holland Z, Prudent R, Reiser JB, Cochet C, Doerig C (2009) Functional analysis of protein kinase CK2 of the human malaria parasite Plasmodium falciparum. Eukaryot Cell 8: 388–397. doi: 10.1128/ec.00334-08
[9]
Dastidar EG, Dayer G, Holland ZM, Dorin-Semblat D, Claes A, et al. (2012) Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway. BMC biology 10: 5. doi: 10.1186/1741-7007-10-5
[10]
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic acids research 31: 3497–3500. doi: 10.1093/nar/gkg500
[11]
Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods in enzymology 374: 461–491. doi: 10.1016/s0076-6879(03)74020-8
[12]
Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. The EMBO journal 20: 5320–5331. doi: 10.1093/emboj/20.19.5320
[13]
Cozza G, Mazzorana M, Papinutto E, Bain J, Elliott M, et al. (2009) Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. The Biochemical journal 421: 387–395. doi: 10.1042/bj20090069
[14]
Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, et al. (2012) The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. Journal of proteome research 11: 5323–5337. doi: 10.1021/pr300557m
[15]
Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, et al. (2011) Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun 2: 565. doi: 10.1038/ncomms1558
[16]
Treeck M, Sanders JL, Elias JE, Boothroyd JC (2011) The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. Cell host & microbe 10: 410–419. doi: 10.1016/j.chom.2011.09.004
[17]
Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, et al. (2001) Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and alpha' subunits: implication of Tyr182. The Biochemical journal 357: 563–567. doi: 10.1042/0264-6021:3570563
[18]
Tewari R, Straschil U, Bateman A, Bohme U, Cherevach I, et al. (2010) The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell host & microbe 8: 377–387. doi: 10.1016/j.chom.2010.09.006
[19]
Leroy D, Doerig C (2008) Drugging the Plasmodium kinome: the benefits of academia-industry synergy. Trends Pharmacol Sci 29: 241–249. doi: 10.1016/j.tips.2008.02.005
[20]
Doerig C, Abdi A, Bland N, Eschenlauer S, Dorin-Semblat D, et al. (2010) Malaria: targeting parasite and host cell kinomes. Biochimica et biophysica acta 1804: 604–612. doi: 10.1016/j.bbapap.2009.10.009
[21]
Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends in biochemical sciences 27: 514–520. doi: 10.1016/s0968-0004(02)02179-5
[22]
Manning G, Young SL, Miller WT, Zhai Y (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proceedings of the National Academy of Sciences of the United States of America 105: 9674–9679. doi: 10.1073/pnas.0801314105
[23]
Shiu SH, Li WH (2004) Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes. Molecular biology and evolution 21: 828–840. doi: 10.1093/molbev/msh077
[24]
Nett IR, Martin DM, Miranda-Saavedra D, Lamont D, Barber JD, et al. (2009) The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Molecular & cellular proteomics : MCP 8: 1527–1538. doi: 10.1074/mcp.m800556-mcp200
[25]
Parsons M, Worthey EA, Ward PN, Mottram JC (2005) Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC genomics 6: 127.
[26]
Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, et al. (2011) The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome biology 12: R66. doi: 10.1186/gb-2011-12-7-r66
[27]
Peixoto L, Chen F, Harb OS, Davis PH, Beiting DP, et al. (2010) Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell host & microbe 8: 208–218. doi: 10.1016/j.chom.2010.07.004
[28]
Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, et al. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325: 1682–1686. doi: 10.1126/science.1172867
[29]
Parsons M, Valentine M, Carter V (1993) Protein kinases in divergent eukaryotes: identification of protein kinase activities regulated during trypanosome development. Proceedings of the National Academy of Sciences of the United States of America 90: 2656–2660. doi: 10.1073/pnas.90.7.2656
[30]
Pease BN, Huttlin EL, Jedrychowski MP, Talevich E, Harmon J, et al. (2013) Global Analysis of Protein Expression and Phosphorylation of Three Stages of Plasmodium falciparum Intraerythrocytic Development. Journal of proteome research 12: 4028–4045. doi: 10.1021/pr400394g
[31]
Pantaleo A, Ferru E, Carta F, Mannu F, Giribaldi G, et al. (2010) Analysis of changes in tyrosine and serine phosphorylation of red cell membrane proteins induced by P. falciparum growth. Proteomics 10: 3469–3479. doi: 10.1002/pmic.201000269
[32]
Low H, Chua CS, Sim TS (2012) Plasmodium falciparum possesses a unique dual-specificity serine/threonine and tyrosine kinase, Pfnek3. Cellular and molecular life sciences : CMLS 69: 1523–1535. doi: 10.1007/s00018-011-0888-y
[33]
Lasonder E, Treeck M, Alam M, Tobin AB (2012) Insights into the Plasmodium falciparum schizont phospho-proteome. Microbes and infection/Institut Pasteur 14: 811–819. doi: 10.1016/j.micinf.2012.04.008
[34]
Aranda S, Laguna A, de la Luna S (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25: 449–462. doi: 10.1096/fj.10-165837
[35]
Lochhead PA (2009) Protein kinase activation loop autophosphorylation in cis: overcoming a Catch-22 situation. Science signaling 2: pe4. doi: 10.1126/scisignal.254pe4
[36]
Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, et al. (2006) A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 24: 627–633. doi: 10.1016/j.molcel.2006.10.009
[37]
Gazarini ML, Garcia CR (2003) Interruption of the blood-stage cycle of the malaria parasite, Plasmodium chabaudi, by protein tyrosine kinase inhibitors. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 36: 1465–1469. doi: 10.1590/s0100-879x2003001100003
[38]
Mishra NC, Sharma M, Sharma A (1999) Inhibitory effect of piceatannol, a protein tyrosine kinase inhibitor, on asexual maturation of Plasmodium falciparum. Indian journal of experimental biology 37: 418–420.
[39]
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cellular and molecular life sciences : CMLS 66: 1858–1867. doi: 10.1007/s00018-009-9154-y
[40]
Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anti-cancer drugs 16: 1037–1043. doi: 10.1097/00001813-200511000-00001
[41]
Pagano MA, Andrzejewska M, Ruzzene M, Sarno S, Cesaro L, et al. (2004) Optimization of protein kinase CK2 inhibitors derived from 4,5,6,7-tetrabromobenzimidazole. Journal of medicinal chemistry 47: 6239–6247. doi: 10.1021/jm049854a
[42]
Sarno S, de Moliner E, Ruzzene M, Pagano MA, Battistutta R, et al. (2003) Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazol?in-7-yl]aceticacid (IQA). The Biochemical journal 374: 639–646. doi: 10.1042/bj20030674
[43]
Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, et al. (2011) Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Molecular and cellular biochemistry 356: 37–43. doi: 10.1007/s11010-011-0956-5
[44]
Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, et al. (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer research 70: 10288–10298. doi: 10.1158/0008-5472.can-10-1893