全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Widespread FRA1-Dependent Control of Mesenchymal Transdifferentiation Programs in Colorectal Cancer Cells

DOI: 10.1371/journal.pone.0088950

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tumor invasion and metastasis involves complex remodeling of gene expression programs governing epithelial homeostasis. Mutational activation of the RAS-ERK is a frequent occurrence in many cancers and has been shown to drive overexpression of the AP-1 family transcription factor FRA1, a potent regulator of migration and invasion in a variety of tumor cell types. However, the nature of FRA1 transcriptional targets and the molecular pathways through which they promote tumor progression remain poorly understood. We found that FRA1 was strongly expressed in tumor cells at the invasive front of human colorectal cancers (CRCs), and that its depletion suppressed mesenchymal-like features in CRC cells in vitro. Genome-wide analysis of FRA1 chromatin occupancy and transcriptional regulation identified epithelial-mesenchymal transition (EMT)-related genes as a major class of direct FRA1 targets in CRC cells. Expression of the pro-mesenchymal subset of these genes predicted adverse outcomes in CRC patients, and involved FRA-1-dependent regulation and cooperation with TGFβ signaling pathway. Our findings reveal an unexpectedly widespread and direct role for FRA1 in control of epithelial-mesenchymal plasticity in CRC cells, and suggest that FRA1 plays an important role in mediating cross talk between oncogenic RAS-ERK and TGFβ signaling networks during tumor progression.

References

[1]  Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273. doi: 10.1038/nrc2620
[2]  Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890. doi: 10.1016/j.cell.2009.11.007
[3]  Thompson EW, Haviv I (2011) The social aspects of EMT-MET plasticity. Nat Med 17: 1048–1049. doi: 10.1038/nm.2437
[4]  LeGolvan MP, Resnick M (2010) Pathobiology of colorectal cancer hepatic metastases with an emphasis on prognostic factors. J Surg Oncol 102: 898–908. doi: 10.1002/jso.21817
[5]  Hung KE, Maricevich MA, Richard LG, Chen WY, Richardson MP, et al. (2010) Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci U S A 107: 1565–1570. doi: 10.1073/pnas.0908682107
[6]  Pollock CB, Shirasawa S, Sasazuki T, Kolch W, Dhillon AS (2005) Oncogenic K-RAS is required to maintain changes in cytoskeletal organization, adhesion, and motility in colon cancer cells. Cancer Res 65: 1244–1250. doi: 10.1158/0008-5472.can-04-1911
[7]  Cejas P, Lopez-Gomez M, Aguayo C, Madero R, de Castro Carpeno J, et al. (2009) KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS One 4: e8199. doi: 10.1371/journal.pone.0008199
[8]  Nash GM, Gimbel M, Shia J, Nathanson DR, Ndubuisi MI, et al. (2010) KRAS mutation correlates with accelerated metastatic progression in patients with colorectal liver metastases. Ann Surg Oncol 17: 572–578. doi: 10.1245/s10434-009-0605-3
[9]  Zlobec I, Lugli A (2010) Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget. Oncotarget 1: 651–661.
[10]  Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, et al. (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179: 56–65. doi: 10.1159/000084509
[11]  Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, et al. (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131: 830–840. doi: 10.1053/j.gastro.2006.06.016
[12]  Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, et al. (2009) Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer. Clin Cancer Res 15: 7642–7651. doi: 10.1158/1078-0432.ccr-09-1431
[13]  Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, et al. (2011) EMT is the dominant program in human colon cancer. BMC Med Genomics 4: 9. doi: 10.1186/1755-8794-4-9
[14]  Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, et al. (2013) A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 19: 619–625. doi: 10.1038/nm.3175
[15]  De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, et al. (2013) Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 19: 614–618. doi: 10.1038/nm.3174
[16]  Eger A, Stockinger A, Park J, Langkopf E, Mikula M, et al. (2004) beta-Catenin and TGFβeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23: 2672–2680. doi: 10.1038/sj.onc.1207416
[17]  Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558. doi: 10.1016/j.ceb.2005.08.001
[18]  Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, et al. (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145: 926–940. doi: 10.1016/j.cell.2011.04.029
[19]  Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, et al. (2002) Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156: 299–313. doi: 10.1083/jcb.200109037
[20]  Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, et al. (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344: 1196–1206. doi: 10.1056/nejm200104193441603
[21]  Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, et al. (2013) SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res 73: 725–735. doi: 10.1158/0008-5472.can-12-2706
[22]  Pino MS, Kikuchi H, Zeng M, Herraiz MT, Sperduti I, et al. (2010) Epithelial to mesenchymal transition is impaired in colon cancer cells with microsatellite instability. Gastroenterology 138: 1406–1417. doi: 10.1053/j.gastro.2009.12.010
[23]  Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41: 2449–2461. doi: 10.1016/j.ejca.2005.08.008
[24]  Young MR, Colburn NH (2006) Fra-1 a target for cancer prevention or intervention. Gene 379: 1–11. doi: 10.1016/j.gene.2006.05.001
[25]  Desmet CJ, Gallenne T, Prieur A, Reyal F, Visser NL, et al. (2013) Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci U S A 110: 5139–5144. doi: 10.1073/pnas.1222085110
[26]  Adiseshaiah P, Lindner DJ, Kalvakolanu DV, Reddy SP (2007) FRA-1 proto-oncogene induces lung epithelial cell invasion and anchorage-independent growth in vitro, but is insufficient to promote tumor growth in vivo. Cancer Res 67: 6204–6211. doi: 10.1158/0008-5472.can-06-4687
[27]  Andersen H, Mahmood S, Tkach V, Cohn M, Kustikova O, et al. (2002) The ability of Fos family members to produce phenotypic changes in epithelioid cells is not directly linked to their transactivation potentials. Oncogene 21: 4843–4848. doi: 10.1038/sj.onc.1205590
[28]  Belguise K, Kersual N, Galtier F, Chalbos D (2005) FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 24: 1434–1444. doi: 10.1038/sj.onc.1208312
[29]  Debinski W, Gibo DM (2005) Fos-related antigen 1 modulates malignant features of glioma cells. Mol Cancer Res 3: 237–249.
[30]  Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, et al. (2010) The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene 29: 662–673. doi: 10.1038/onc.2009.308
[31]  Sayan AE, Stanford R, Vickery R, Grigorenko E, Diesch J, et al. (2012) Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 31: 1493–1503. doi: 10.1038/onc.2011.336
[32]  Tkach V, Tulchinsky E, Lukanidin E, Vinson C, Bock E, et al. (2003) Role of the Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility. Oncogene 22: 5045–5054. doi: 10.1038/sj.onc.1206570
[33]  Vial E, Sahai E, Marshall CJ (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–79. doi: 10.1016/s1535-6108(03)00162-4
[34]  Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K, et al. (2009) RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell 35: 511–522. doi: 10.1016/j.molcel.2009.08.002
[35]  Zhang W, Hart J, McLeod HL, Wang HL (2005) Differential expression of the AP-1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms. Am J Clin Pathol 124: 11–19. doi: 10.1309/t1h2y2chwy7pd2bn
[36]  Rettig WJ, Chesa PG, Beresford HR, Feickert HJ, Jennings MT, et al. (1986) Differential expression of cell surface antigens and glial fibrillary acidic protein in human astrocytoma subsets. Cancer Res 46: 6406–6412.
[37]  Vial E, Marshall CJ (2003) Elevated ERK-MAP kinase activity protects the FOS family member FRA-1 against proteasomal degradation in colon carcinoma cells. J Cell Sci 116: 4957–4963. doi: 10.1242/jcs.00812
[38]  Andreolas C, Kalogeropoulou M, Voulgari A, Pintzas A (2008) Fra-1 regulates vimentin during Ha-RAS-induced epithelial mesenchymal transition in human colon carcinoma cells. Int J Cancer 122: 1745–1756. doi: 10.1002/ijc.23309
[39]  Ozanne BW, Spence HJ, McGarry LC, Hennigan RF (2007) Transcription factors control invasion: AP-1 the first among equals. Oncogene 26: 1–10. doi: 10.1038/sj.onc.1209759
[40]  Brabletz T, Jung A, Kirchner T (2002) Beta-catenin and the morphogenesis of colorectal cancer. Virchows Arch 441: 1–11. doi: 10.1007/s00428-002-0642-9
[41]  Tice DA, Soloviev I, Polakis P (2002) Activation of the Wnt pathway interferes with serum response element-driven transcription of immediate early genes. J Biol Chem 277: 6118–6123. doi: 10.1074/jbc.m111255200
[42]  Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T (2004) Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer 108: 321–326. doi: 10.1002/ijc.11522
[43]  Hlubek F, Brabletz T, Budczies J, Pfeiffer S, Jung A, et al. (2007) Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer 121: 1941–1948. doi: 10.1002/ijc.22916
[44]  Hlubek F, Jung A, Kotzor N, Kirchner T, Brabletz T (2001) Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res 61: 8089–8093.
[45]  Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, et al. (2003) Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 63: 2658–2664.
[46]  Sanchez-Tillo E, de Barrios O, Siles L, Cuatrecasas M, Castells A, et al. (2011) beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci U S A 108: 19204–19209. doi: 10.1073/pnas.1108977108
[47]  Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, et al. (2011) Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 43: 145–155. doi: 10.1016/j.molcel.2011.06.016
[48]  Tam WL, Lu H, Buikhuisen J, Soh BS, Lim E, et al. (2013) Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24: 347–364. doi: 10.1016/j.ccr.2013.08.005
[49]  Olson A, Sheth N, Lee JS, Hannon G, Sachidanandam R (2006) RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs. Nucleic Acids Res 34: D153–157. doi: 10.1093/nar/gkj051
[50]  Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315. doi: 10.1093/bioinformatics/btg405
[51]  Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor 397–420. doi: 10.1007/0-387-29362-0_23
[52]  Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57: 289–300.
[53]  Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25
[54]  Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106. doi: 10.1186/gb-2010-11-10-r106
[55]  Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, et al. (2008) UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 183: 1259–1274. doi: 10.1083/jcb.200805146
[56]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324
[57]  Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137. doi: 10.1186/gb-2008-9-9-r137
[58]  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. doi: 10.1186/gb-2004-5-10-r80
[59]  Zhu LJ, Gazin C, Lawson ND, Pages H, Lin SM, et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11: 237. doi: 10.1186/1471-2105-11-237
[60]  Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37: W202–208. doi: 10.1093/nar/gkp335
[61]  Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26. doi: 10.1038/nbt.1754
[62]  Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86. doi: 10.1186/gb-2010-11-8-r86
[63]  Blahnik KR, Dou L, O'Geen H, McPhillips T, Xu X, et al. (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res 38: e13. doi: 10.1093/nar/gkp1012
[64]  Mizuno H, Kitada K, Nakai K, Sarai A (2009) PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics 2: 18. doi: 10.1186/1755-8794-2-18

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133