[1] | Baddeley A (1992) Working memory. Science 255: 556–559. doi: 10.1126/science.1736359
|
[2] | D'Ardenne K, Eshel N, Luka J, Lenartowicz A, Nystrom LE, et al. (2012) Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proc Natl Acad Sci U S A 109: 19900–19909. doi: 10.1073/pnas.1116727109
|
[3] | Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ (2012) Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J Neurosci 32: 12411–12420. doi: 10.1523/jneurosci.0421-12.2012
|
[4] | Fuster JM (2008) The Prefrontal Cortex. London: Academic Press.
|
[5] | Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24: 455–463. doi: 10.1016/s0166-2236(00)01868-3
|
[6] | Li S, Bai W, Liu T, Yi H, Tian X (2012) Increases of theta-low gamma coupling in rat medial prefrontal cortex during working memory task. Brain Res Bull 89: 115–123. doi: 10.1016/j.brainresbull.2012.07.012
|
[7] | Gordon EM, Breeden AL, Bean SE, Vaidya CJ (2012) Working memory-related changes in functional connectivity persist beyond task disengagement. Hum Brain Mapp doi: 10.1002/hbm.22230
|
[8] | Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21: 424–430. doi: 10.1097/wco.0b013e328306f2c5
|
[9] | Uddin LQ, Supekar K, Menon V (2013) Reconceptualizing functional brain connectivity in autism from a developmental perspective. Front Hum Neurosci 7: 458. doi: 10.3389/fnhum.2013.00458
|
[10] | Wang K, Liang M, Wang L, Tian L, Zhang X, et al. (2007) Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 28: 967–978. doi: 10.1002/hbm.20324
|
[11] | Ries ML, McLaren DG, Bendlin BB, Guofanxu, Rowley HA, et al. (2012) Medial prefrontal functional connectivity–relation to memory self-appraisal accuracy in older adults with and without memory disorders. Neuropsychologia 50: 603–611. doi: 10.1016/j.neuropsychologia.2011.12.014
|
[12] | Allen G, Barnard H, McColl R, Hester AL, Fields JA, et al. (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64: 1482–1487. doi: 10.1001/archneur.64.10.1482
|
[13] | Feldt S, Bonifazi P, Cossart R (2011) Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci 34: 225–236. doi: 10.1016/j.tins.2011.02.007
|
[14] | Kispersky T, Gutierrez GJ, Marder E (2011) Functional connectivity in a rhythmic inhibitory circuit using Granger causality. Neural Syst Circuits 1: 9. doi: 10.1186/2042-1001-1-9
|
[15] | Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods 186: 262–273. doi: 10.1016/j.jneumeth.2009.11.020
|
[16] | Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging 21: 1251–1261.
|
[17] | Gow DW Jr, Segawa JA, Ahlfors SP, Lin FH (2008) Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates. Neuroimage 43: 614–623. doi: 10.1016/j.neuroimage.2008.07.027
|
[18] | Nicolaou N, Hourris S, Alexandrou P, Georgiou J (2012) EEG-based automatic classification of ‘awake’ versus ‘anesthetized’ state in general anesthesia using Granger causality. PLoS One 7: e33869. doi: 10.1371/journal.pone.0033869
|
[19] | Eldawlatly S, Jin R, Oweiss KG (2009) Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Comput 21: 450–477. doi: 10.1162/neco.2008.09-07-606
|
[20] | Mikula S, Niebur E (2006) A novel method for visualizing functional connectivity using principal component analysis. Int J Neurosci 116: 419–429. doi: 10.1080/00207450500505761
|
[21] | Leonardi N, Richiardi J, Gschwind M, Simioni S, Annoni JM, et al. (2013) Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83: 937–950. doi: 10.1016/j.neuroimage.2013.07.019
|
[22] | Hu J, Si J, Olson BP, He J (2005) Feature detection in motor cortical spikes by principal component analysis. IEEE Trans Neural Syst Rehabil Eng 13: 256–262. doi: 10.1109/tnsre.2005.847389
|
[23] | Prasad A, Sahin M (2009) Spinal cord recordings in rats during skilled reaching task. Conf Proc IEEE Eng Med Biol Soc 2009: 582–585. doi: 10.1109/iembs.2009.5332818
|
[24] | Zhou Z, Ding M, Chen Y, Wright P, Lu Z, et al. (2009) Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality. Brain Res 1289: 22–29. doi: 10.1016/j.brainres.2009.06.096
|
[25] | Bai W, Liu T, Yi H, Li S, Tian X (2012) Anticipatory activity in rat medial prefrontal cortex during a working memory task. Neurosci Bull 28: 693–703. doi: 10.1007/s12264-012-1291-x
|
[26] | Zhu L, Lai YC, Hoppensteadt FC, He J (2005) Characterization of neural interaction during learning and adaptation from spike-train data. Math Biosci Eng 2: 1–23. doi: 10.3934/mbe.2005.2.1
|
[27] | Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37: 424–438. doi: 10.2307/1912791
|
[28] | Seth AK, Edelman GM (2007) Distinguishing causal interactions in neural populations. Neural Comput 19: 910–933. doi: 10.1162/neco.2007.19.4.910
|
[29] | Heitger MH, Goble DJ, Dhollander T, Dupont P, Caeyenberghs K, et al. (2013) Bimanual motor coordination in older adults is associated with increased functional brain connectivity–a graph-theoretical analysis. PLoS One 8: e62133. doi: 10.1371/journal.pone.0062133
|
[30] | Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3: e17. doi: 10.1371/journal.pcbi.0030017
|
[31] | Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059–1069. doi: 10.1016/j.neuroimage.2009.10.003
|
[32] | Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 455–466. doi: 10.1142/9789814447331_0043
|
[33] | Gao L, Zhang T, Wang J, Stephen J (2013) Facilitating neuronal connectivity analysis of evoked responses by exposing local activity with principal component analysis preprocessing: simulation of evoked MEG. Brain Topogr 26: 201–211. doi: 10.1007/s10548-012-0250-1
|
[34] | Zhou Z, Chen Y, Ding M, Wright P, Lu Z, et al. (2009) Analyzing brain networks with PCA and conditional Granger causality. Hum Brain Mapp 30: 2197–2206. doi: 10.1002/hbm.20661
|