Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.
References
[1]
Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, et al. (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325: 1688–1695. doi: 10.1056/nejm199112123252403
[2]
Schwindinger WF, Francomano CA, Levine MA (1992) Identification of a mutation in the gene encoding the α subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 89: 5152–5156. doi: 10.1073/pnas.89.11.5152
Robey PG, Kuznetsov S, Riminucci M, Bianco P (2007) The role of stem cells in fibrous dysplasia of bone and the Mccune-Albright syndrome. Pediatr Endocrinol Rev 4 Suppl 4: 386–394.
[5]
Happle R (1986) The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet 29: 321–324. doi: 10.1111/j.1399-0004.1986.tb01261.x
[6]
Lyons J, Landis CA, Harsh G, Vallar L, Grünewald K, et al. (1990) Two G protein oncogenes in human endocrine tumors. Science 249: 655–659. doi: 10.1126/science.2116665
[7]
Wu J, Matthaei H, Maitra A, Dal Molin M, Wood LD, et al. (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 3: 92ra66. doi: 10.1126/scitranslmed.3002543
[8]
Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113. doi: 10.1126/science.1145720
[9]
Iiri T, Herzmark P, Nakamoto JM, Van Dop C, Bourne HR (1994) Rapid GDP release from Gs-alpha in patients with gain and loss of endocrine function. Nature 371: 164–167. doi: 10.1038/371164a0
[10]
Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, et al. (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696. doi: 10.1038/340692a0
[11]
Kim I, Kim ER, Nam HJ, Chin MO, Moon YH, et al. (1999) Activating mutation of Gsα in McCune-Albright syndrome causes skin pigmentation by tyrosinase gene activation on affected melanocytes. Horm Res 52: 235–240. doi: 10.1159/000023467
[12]
Chanson P, Dib A, Visot A, Derome PJ (1994) McCune-Albright syndrome and acromegaly: Clinical studies and responses to treatment in five cases. Acta Endocrinol(Copenh) 131: 229–234. doi: 10.1530/eje.0.1310229
[13]
Bianco P, Kuznetsov SA, Riminucci M, Fisher LW, Spiegel AM, et al. (1998) Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsalpha-mutated skeletal progenitor cells. J Clin Invest 101: 1737–1744. doi: 10.1172/jci2361
[14]
Collins MT, Singer FR, Eugster E (2011) Extraskeletal Manifestations of Fibrous Dysplasia Orphanet. J Rare Dis (in press). doi: 10.1186/1750-1172-7-s1-s4
[15]
Celi FS, Coppotelli G, Chidakel A, Kelly M, Brillante BA, et al. (2008) The role of type 1 and type 2 5′-deiodinase in the pathophysiology of the 3,5,3′-triiodothyronine toxicosis of McCune-Albright syndrome. J Clin Endocrinol Metab 93: 2383–2389. doi: 10.1210/jc.2007-2237
[16]
Lawrence TS, Ginzberg RD, Gilula NB, Beers WH (1979) Hormonally induced cell shape changes in cultured rat ovarian granulosa cells. J Cell Biol 80: 21–36. doi: 10.1083/jcb.80.1.21
[17]
Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR (2012) Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci 33: 64–78. doi: 10.1016/j.tips.2011.10.006
[18]
Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, et al. (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A 103: 11473–11478. doi: 10.1073/pnas.0604348103
[19]
Wang Y, Jadhav A, Southal N, Huang R, Nguyen DT (2010) A grid algorithm for high throughput fitting of dose-response curve data. Curr Chem Genomics 4: 57–66. doi: 10.2174/1875397301004010057
[20]
Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53: 2719–2740. doi: 10.1021/jm901137j
[21]
Kim E, Sohn S, Lee M, Park C, Jung J, et al. (2005) Effect of gsp oncogene on somatostatin receptor subtype 1 and 2 mRNA levels in GHRH-responsive GH3 cells. Pituitary 8: 155–162. doi: 10.1007/s11102-005-5245-4
[22]
Ham J, Ivan M, Wynford-Thomas D, Scanlon MF (1997) GH3 cells expressing constitutively active Gs alpha (Q227L) show enhanced hormone secretion and proliferation. Mol Cell Endocrinol 127: 41–47. doi: 10.1016/s0303-7207(96)03987-1
[23]
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503: 548–551. doi: 10.1038/nature12796