Phaeocystis globosa blooms have frequently occurred along coastal waters and exerted serious impacts on ecological environments by releasing toxic hemolytic substances, forming nuisance foam, and causing oxygen depletion. An actinomycete strain RPS with high algicidal activity against P. globosa was isolated and identified as Streptomyces alboflavus, based on morphology, physiological and biochemical characteristics, and 16S rDNA sequence analysis. RPS lysed 95% of P. globosa within 48 h by releasing an extracellular active substance into the growth medium. The activity of RPS supernatant was sensitive to temperature at and above 50°C and insensitive to pH from 3 to 11. The molecular weight of the active substance was between 100 Da and 1000 Da, and approximately 90% of it was extracted by ethyl acetate. It was presumed that the active component efficiently inhibited the movement of P. globosa, caused the flagella to fall off the algae, and finally lysed the algal cells. RPS showed a wide target range against harmful algae. S. alboflavus RPS with high algicidal activity and such novel features of temperature and pH sensitivity, low molecular weight, algicidal process, and target range possesses great potential in the biological control of P. globosa blooms.
References
[1]
Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4: 143–176. doi: 10.1146/annurev-marine-120308-081121
[2]
Van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108: 133–141. doi: 10.1289/ehp.00108s1133
[3]
Jessup DA, Miller MA, Ryan JP, Nevins HM, Kerkering HA, et al. (2009) Mass stranding of marine birds caused by a surfactant-producing red tide. PLoS One 4: e4550. doi: 10.1371/journal.pone.0004550
[4]
Lee S-W, Lozano-Sánchez LM, Rodríguez-González V (2013) Green tide deactivation with layered-structure cuboids of Ag/BaTiO3 under UV light. J Hazard Mater 263: 20–27. doi: 10.1016/j.jhazmat.2013.08.017
[5]
Li PN, Zhang LZ, Wang WW, Su JL, Feng LL (2011) Rapid catalytic microwave method to damage Microcystis aeruginosa with FeCl3-loaded active carbon. Environ Sci Technol 45: 4521–4526. doi: 10.1021/es200057g
[6]
Lee YJ, Choi JK, Kim EK, Youn SH, Yang EJ (2008) Field experiments on mitigation of harmful algal blooms using a sophorolipid-yellow clay mixture and effects on marine plankton. Harmful Algae 7: 154–162. doi: 10.1016/j.hal.2007.06.004
[7]
Li L, Pan G (2013) A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ Sci Technol 47: 4555–4562. doi: 10.1021/es305234d
[8]
Fei X (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512: 145–151. doi: 10.1023/b:hydr.0000020320.68331.ce
[9]
Jeong HJ, Kim JS, Yoo YD, Kim ST, Song JY, et al. (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7: 368–377. doi: 10.1016/j.hal.2007.12.004
[10]
Zhou LH, Zheng TL, Wang X, Ye JL, Tian Y, et al. (2007) Effect of five chinese traditional medicines on the biological activity of a red-tide causing alga - Alexandrium tamarense. Harmful Algae 6: 354–360. doi: 10.1016/j.hal.2006.10.002
[11]
Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52: 342–347. doi: 10.1016/j.ocecoaman.2009.04.006
[12]
Yoshikawa K, Adachi K, Nishijima M, Takadera T, Tamaki S, et al. (2000) β-cyanoalanine production by marine bacteria on cyanide-free medium and its specific inhibitory activity toward cyanobacteria. Appl Environ Microbiol 66: 718–722. doi: 10.1128/aem.66.2.718-722.2000
[13]
Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, et al. (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6: 799–810. doi: 10.1016/j.hal.2007.04.004
[14]
Wang BX, Zhou YY, Bai SJ, Su JQ, Tian Y, et al. (2010) A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense. Lett Appl Microbiol 51: 552–557. doi: 10.1111/j.1472-765x.2010.02936.x
[15]
Zheng XW, Zhang BZ, Zhang JL, Huang LP, Lin J, et al. (2013) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol 97: 9207–9215. doi: 10.1007/s00253-012-4617-8
[16]
Kodama M, Doucette GJ, Green DH (2006) Relationships between bacteria and harmful algae. In: EGranéli and J T Turner, editors. Ecology of Harmful Algae Berlin: Springer. pp. 243–255.
[17]
Yang CY, Li Y, Zhou YY, Zheng W, Tian Y, et al. (2012) Bacterial community dynamics during a bloom caused by Akashiwo sanguinea in the Xiamen Sea Area, China. Harmful Algae 20 132–141. doi: 10.1016/j.hal.2012.09.002
[18]
Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76: 667–684. doi: 10.1128/mmbr.00007-12
[19]
Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51: 139–144. doi: 10.1111/j.1550-7408.2004.tb00538.x
[20]
Wang BX, Yang XR, Lu JL, Zhou YY, Su JQ, et al. (2012) A marine bacterium producing protein with algicidal activity against Alexandrium tamarense. Harmful Algae 13: 83–88. doi: 10.1016/j.hal.2011.10.006
[21]
Kodani S, Imoto A, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J Appl Phychol 14: 109–114.
[22]
Nayak BB, Karunasagar I, Karunasagar I (2000) The survival of different vibrios in association with a laboratory culture of the red-tide-causing organism Amphidinium carterae. World J Microbiol Biotechnol 16: 99–101.
[23]
Seong KA, Jeong HJ (2011) Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates. Ocean Sci J 46: 105–115. doi: 10.1007/s12601-011-0010-2
[24]
Manset KJV, Azanza RV, Onda DFL (2013) Algicidal bacteria from fish culture areas in Bolinao, Pangasinan, Northern Philippines. J Environ Sci Manag: 11–20.
[25]
Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1: 277–293. doi: 10.1016/s1568-9883(02)00032-x
[26]
Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, et al. (2008) Lysis of cyanobacteria with volatile organic compounds. Chemosphere 71: 1531–1538. doi: 10.1016/j.chemosphere.2007.11.052
[27]
Cai WW, Wang H, Tian Y, Chen F, Zheng TL (2011) Influence of a bacteriophage on the population dynamics of toxic dinoflagellates by lysis of algicidal bacteria. Appl Environ Microbiol 77: 7837–7840. doi: 10.1128/aem.05783-11
[28]
Gumbo RJ, Ross G, Cloete ET (2008) Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol 7: 4765–4773.
[29]
Peperzak L, Poelman M (2008) Mass mussel mortality in The Netherlands after a bloom of Phaeocystis globosa (prymnesiophyceae). J Sea Res 60: 220–222. doi: 10.1016/j.seares.2008.06.001
[30]
Liss PS, Malin G, Turner SM, Holligan PM (1994) Dimethyl sulphide and Phaeocystis: a review. J Mar Syst 5: 41–53. doi: 10.1016/0924-7963(94)90015-9
[31]
Peng XC, Yang WD, Liu JS, Peng ZY, Lv H, et al. (2005) Characterization of the hemolytic properties of an extract from Phaeocystis globosa Scherffel. J Integr Plant Biol 47: 165–171. doi: 10.1111/j.1744-7909.2005.00039.x
[32]
Blauw AN, Los FJ, Huisman J, Peperzak L (2010) Nuisance foam events and Phaeocystis globosa blooms in Dutch coastal waters analyzed with fuzzy logic. J Mar Syst 83: 115–126. doi: 10.1016/j.jmarsys.2010.05.003
[33]
Zhang S, Jiang Y, Chen CS, Spurgin J, Schwehr KA, et al. (2012) Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances. Environ Sci Technol 46: 8764–8772. doi: 10.1021/es301000m
[34]
Qi YZ, Chen JF, Wang ZH, Xu N, Wang Y, et al. (2004) Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998. Hydrobiologia 512: 209–214. doi: 10.1023/b:hydr.0000020329.06666.8c
[35]
Monchy S, Grattepanche JD, Breton E, Meloni D, Sanciu G, et al. (2012) Microplanktonic community structure in a coastal system relative to a Phaeocystis bloom inferred from morphological and tag pyrosequencing methods. PLoS One 7: e39924. doi: 10.1371/journal.pone.0039924
[36]
Hai DN, Lam NN, Dippner JW (2010) Development of Phaeocystis globosa blooms in the upwelling waters of the South Central coast of Viet Nam. J Mar Syst 83: 253–261. doi: 10.1016/j.jmarsys.2010.04.015
[37]
Lamy D, Obernosterer I, Laghdass M, Artigas LF, Breton E, et al. (2009) Temporal changes of major bacterial groups and bacterial heterotrophic activity during a Phaeocystis globosa bloom in the eastern English Channel. Aquat Microb Ecol 58: 95–107. doi: 10.3354/ame01359
[38]
Baudoux AC, Brussaard CP (2005) Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341: 80–90. doi: 10.1016/j.virol.2005.07.002
[39]
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340. doi: 10.1099/00207713-16-3-313
[40]
Actinomycete Classification Group of CAS (1975) The manual of Streptomyces identification. Beijing: Science Press. 13–16 p.
[41]
Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599. doi: 10.1093/molbev/msm092
[42]
Guo ZY, Shen L, Ji ZQ, Zhang JW, Huang LZ, et al. (2009) NW-G01, a novel cyclic hexadepsipeptide antibiotic, produced by Streptomyces alboflavus 313: I. Taxonomy, fermentation, isolation, physicochemical properties and antibacterial activities. J Antibiot 62: 201–205. doi: 10.1038/ja.2009.15
[43]
Orton JH (1923) The so-called "baccy-juice'' in the waters of the Thames oyster-beds. Nature 111: 773.
[44]
Schoemann V, Becquevort S, Stefels J, Rousseau W, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53: 43–66. doi: 10.1016/j.seares.2004.01.008
[45]
Yamamoto Y, Kouchiwa T, Hodoki Y, Hotta K, Uchida H, et al. (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J Appl Psychol 10: 391–397. doi: 10.1023/a:1008077414808
[46]
Bai SJ, Huang LP, Su JQ, Tian Y, Zheng TL (2011) Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense. Curr Microbiol 62: 1774–1781. doi: 10.1007/s00284-011-9927-z
[47]
Yan RJ, Yin PH, Qiu JH (2011) Isolation and characterization of two marine algicidal bacteria against the Phaeocystis globosa. Huan Jing Ke Xue 32: 225–230.
[48]
Choi H, Kim B, Kim J, Han M (2005) Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (cyanobacteria) in eutrophic freshwaters. Biol Control 33: 335–343. doi: 10.1016/j.biocontrol.2005.03.007
[49]
Banin E, Khare SK, Naider F, Rosenberg E (2001) Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl Environ Microbiol 67: 1536–1541. doi: 10.1128/aem.67.4.1536-1541.2001
[50]
Nakashima T, Kim D, Miyazaki Y, Yamaguchi K, Takeshita S, et al. (2006) Mode of action of an antialgal agent produced by a marine gammaproteobacterium against Chattonella marina. Aquat Microb Ecol 45: 255–262. doi: 10.3354/ame045255
[51]
Wang X, Gong L, Liang S, Han X, Zhu C, et al. (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4: 433–443. doi: 10.1016/j.hal.2004.06.001
[52]
Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244: 1–15. doi: 10.3354/meps244001
[53]
Lee S, Kato J, Takiguchi N, Kuroda A, Ikeda T, et al. (2000) Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl Environ Microbiol 66: 4334–4339. doi: 10.1128/aem.66.10.4334-4339.2000
[54]
Paul C, Pohnert G (2011) Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6: e21032. doi: 10.1371/journal.pone.0021032
[55]
Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D (2009) A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21: 2036–2044. doi: 10.1105/tpc.109.068007
[56]
Meuser D, Splitt H, Wagner R, Schrempf H (1999) Exploring the open pore of the potassium channel from Streptomyces lividans. FEBS Lett 462: 447–452. doi: 10.1016/s0014-5793(99)01579-3
[57]
Roche S, Rey FA, Gaudin Y, Bressanelli S (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science. 315: 843–848. doi: 10.1126/science.1135710
[58]
Sakata T, Yoshikawa T, Nishitarumizu S (2011) Algicidal activity and identification of an algicidal substance produced by marine Pseudomonas sp. C55a-2. Fish Sci: 1–6.
[59]
Li FM, Hu HY (2005) Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 71: 6545–6553. doi: 10.1128/aem.71.11.6545-6553.2005
[60]
Ni L, Acharya K, Hao X, Li S (2012) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88: 1051–1057. doi: 10.1016/j.chemosphere.2012.05.009
[61]
Zhang HJ, An XL, Zhou YY, Zhang BZ, Li D, et al. (2013) Effect of oxidative stress induced by Brevibacterium sp. BS01 on a HAB causing species - Alexandrium tamarense. PLoS One 8: e63018. doi: 10.1371/journal.pone.0063018
[62]
Kong Y, Xu X, Zhu L (2013) Cyanobactericidal effect of Streptomyces sp. HJC-D1 on Microcystis auruginosa. PLoS One 8: e57654. doi: 10.1371/journal.pone.0057654