全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Single Whole-Body Low Dose X-Irradiation Does Not Affect L1, B1 and IAP Repeat Element DNA Methylation Longitudinally

DOI: 10.1371/journal.pone.0093016

Full-Text   Cite this paper   Add to My Lib

Abstract:

The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1), B1 and Intracisternal-A-Particle (IAP) repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons. By 420 days post-irradiation, neither radiation- or aging-related changes in the methylation of peripheral blood, spleen or liver L1, B1 and IAP elements were observed. Analysis of the spleen and liver tissues of cohorts of untreated aging mice showed that the 17–19 month age group exhibited higher repeat element methylation than younger or older mice, with no overall decline in methylation detected with age. This is the first temporal analysis of the effect of low dose radiation on repeat element methylation in mouse peripheral blood and the first to examine the long term effect of this dose on repeat element methylation in a radiosensitive tissue (spleen) and a tissue fundamental to the aging process (liver). Our data indicate that the methylation of murine DNA repeat elements can fluctuate with age, but unlike human studies, do not demonstrate an overall aging-related decline. Furthermore, our results indicate that a low dose of ionising radiation does not induce detectable changes to murine repeat element DNA methylation in the tissues and at the time-points examined in this study. This radiation dose is relevant to human diagnostic radiation exposures and suggests that a dose of 10 mGy X-rays, unlike high dose radiation, does not cause significant short or long term changes to repeat element or global DNA methylation.

References

[1]  Coviello-McLaughlin GM, Prowse KR (1997) Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res 25: 3051–3058. doi: 10.1093/nar/25.15.3051
[2]  Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, et al. (2007) Declining p53 function in the aging process: A possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA 104: 16633–16638. doi: 10.1073/pnas.0708043104
[3]  Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, et al. (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–712. doi: 10.1016/s0092-8674(00)80580-2
[4]  Steegenga WT, de Wit NJW, Boekschoten MV, IJssennagger N, Lute C, et al. (2012) Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6 J mice. BMC Med Genomics 5: 38. doi: 10.1186/1755-8794-5-38
[5]  Gonzalo S (2010) Epigenetic alterations in aging. J Appl Physiol 109: 586–597. doi: 10.1152/japplphysiol.00238.2010
[6]  Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8: 268–276. doi: 10.1016/j.arr.2009.03.004
[7]  Akagi K, Li J, Stephens RM, Volfovsky N, Symer DE (2008) Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. Genome Res 18: 869–880. doi: 10.1101/gr.075770.107
[8]  Ekram MB, Kang K, Kim H, Kim J (2012) Retrotransposons as a major source of epigenetic variations in the mammalian genome. Epigenetics 7: 370–382. doi: 10.4161/epi.19462
[9]  St. Laurent G III, Hammell N, McCaffrey TA (2010) A LINE-1 component to human aging: Do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 131: 299–305. doi: 10.1016/j.mad.2010.03.008
[10]  Barbot W, Dupressoir A, Lazar V, Heidmann T (2002) Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Res 30: 2365–2373. doi: 10.1093/nar/30.11.2365
[11]  Gaubatz JW, Arcement B, Cutler RG (1991) Gene expression of an endogenous retrovirus-like element during murine development and aging. Mech Ageing Dev 57: 71–85. doi: 10.1016/0047-6374(91)90025-u
[12]  Mays-Hoopes L, Chao W, Butcher HC, Huang RCC (1986) Decreased methylation of the major mouse long interspersed repeated DNA during aging and in myeloma cells. Dev Genet 7: 65–73. doi: 10.1002/dvg.1020070202
[13]  Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, et al. (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130: 234–239. doi: 10.1016/j.mad.2008.12.003
[14]  Jintaridth P, Mutirangura A (2010) Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics 41: 194–200. doi: 10.1152/physiolgenomics.00146.2009
[15]  Liu L, van Groen T, Kadish I, Li Y, Wang D, et al. (2011) Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin Epigenetics 2: 349–360. doi: 10.1007/s13148-011-0042-6
[16]  Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, et al. (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5: e1000602. doi: 10.1371/journal.pgen.1000602
[17]  Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, et al. (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124: 81–87. doi: 10.1002/ijc.23849
[18]  Fahrner JA, Eguchi S, Herman JG, Baylin SB (2002) Dependence of Histone Modifications and Gene Expression on DNA Hypermethylation in Cancer. Cancer Res 62: 7213–7218.
[19]  Igarashi S, Suzuki H, Niinuma T, Shimizu H, Nojima M, et al. (2010) A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res 16: 5114–5123. doi: 10.1158/1078-0432.ccr-10-0581
[20]  Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, et al. (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100: 1734–1738. doi: 10.1093/jnci/djn359
[21]  Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, et al. (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16: 2418–2426. doi: 10.1158/1078-0432.ccr-09-2819
[22]  Wolff EM, Byun H-M, Han HF, Sharma S, Nichols PW, et al. (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6: e1000917. doi: 10.1371/journal.pgen.1000917
[23]  Beetstra S, Thomas P, Salisbury C, Turner J, Fenech M (2005) Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat Res-Fund Mol M 578: 317–326. doi: 10.1016/j.mrfmmm.2005.05.012
[24]  Drissi R, Wu J, Hu Y, Bockhold C, Dome JS (2011) Telomere Shortening Alters the Kinetics of the DNA Damage Response after Ionizing Radiation in Human Cells. Cancer Prev Res 4: 1973–1981. doi: 10.1158/1940-6207.capr-11-0069
[25]  Lindop PJ, Rotblat J (1962) The Age Factor in Radiation Sensitivity in Mice. British Journal of Radiology 35: 23–31. doi: 10.1259/0007-1285-35-409-23
[26]  Gadhia PK (1998) Possible age-dependent adaptive response to a low dose of X-rays in human lymphocytes. Mutagenesis 13: 151–152. doi: 10.1093/mutage/13.2.151
[27]  Kato K, Kuwabara M, Kashiwakura I (2011) The influence of gender-and age-related differences in the radiosensitivity of hematopoietic progenitor cells detected in steady-state human peripheral blood. J Radiat Res: 293–299.
[28]  Sasaki S (1991) Influence of the age of mice at exposure to radiation on life-shortening and carcinogenesis. J Radiat Res 32: 73–85. doi: 10.1269/jrr.32.supplement2_73
[29]  Shuryak I, Sachs R, Brenner D (2010) Cancer risks after radiation exposure in middle age. J Natl Cancer Inst 102: 1628–1636. doi: 10.1093/jnci/djq346
[30]  Zaichkina S, Rozanova O, Aptikaeva G, Akhmadieva A, Klokov D, et al. (2006) Investigation of the low-dose gamma-irradiation effect on the spontaneous and high-dose radiation-induced level of cytogenetic damage in mouse bone marrow cells in vivo. Int J Low Radiat Res 2: 1–12. doi: 10.1504/ijlr.2006.007890
[31]  Lorenz E, Hollcroft JW, Miller E, Congdon CC, Schweisthal R (1955) Long-term effects of acute and chronic irradiation in mice. I. Survival and tumor incidence following chronic irradiation of 0.11 r per day. J Natl Cancer Inst 15: 1049–1058.
[32]  Sakai K, Nomura T, Ina Y (2006) Enhancement of bio-protective functions by low dose/dose-rate radiation. Dose Resp 4: 327–332. doi: 10.2203/dose-response.06-115.sakai
[33]  Ina Y, Tanooka H, Yamada T, Sakai K (2005) Suppression of thymic lymphoma induction by life-long low-dose-rate irradiation accompanied by immune activation in C57BL/6 mice. Radiat Res 163: 153–158. doi: 10.1667/rr3289
[34]  Mitchel RE, Burchart P, Wyatt H (2008) A lower dose threshold for the in vivo protective adaptive response to radiation. Tumorigenesis in chronically exposed normal and Trp53 heterozygous C57BL/6 mice. Radiat Res 170: 765–775. doi: 10.1667/rr1414.1
[35]  Mitchel RE, Jackson JS, Carlisle SM (2004) Upper dose thresholds for radiation-induced adaptive response against cancer in high-dose-exposed, cancer-prone, radiation-sensitive Trp53 heterozygous mice. Radiat Res 162: 20–30. doi: 10.1667/rr3190
[36]  Mitchel RE, Jackson JS, Morrison DP, Carlisle SM (2003) Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation-sensitive Trp53 heterozygous mice. Radiat Res 159: 320–327. doi: 10.1667/0033-7587(2003)159[0320:ldorit]2.0.co;2
[37]  Nomura T, Sakai K, Ogata H, Magae J (2013) Prolongation of life span in the accelerated aging klotho mouse model, by low-dose-rate continuous γ irradiation. Radiat Res 179: 717–724. doi: 10.1667/rr2977.1
[38]  Newman M, Blyth BJ, Hussey DJ, Jardine D, Sykes PJ, et al. (2012) Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis. Epigenetics 7: 92–105. doi: 10.4161/epi.7.1.18815
[39]  Hooker AM, Bhat M, Day TK, Lane JM, Swinburne SJ, et al. (2004) The linear no-threshold model does not hold for low-dose ionizing radiation. Radiat Res 162: 447–452. doi: 10.1667/rr3228
[40]  Aukett R, Burns J, Greener A, Harrison R, Moretti C, et al. (2005) Addendum to the IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al–4 mm Cu HVL). Phys Med Biol 50: 2739. doi: 10.1088/0031-9155/50/12/001
[41]  Aukett R, Harrison R, Moretti C, Nahum A, Rosser K (1996) The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10–300 kV generating potential). Phys Med Biol 41: 2605. doi: 10.1088/0031-9155/41/12/002
[42]  Edwards LJ (2000) Modern statistical techniques for the analysis of longitudinal data in biomedical research. Pediatr Pulmonol 30: 330–344. doi: 10.1002/1099-0496(200010)30:4<330::aid-ppul10>3.0.co;2-d
[43]  Wolff S (1998) The adaptive response in radiobiology: Evolving insights and implications. Environ Health Perspect 106: 277–283. doi: 10.1289/ehp.98106s1277
[44]  Feinendegen L (1999) The role of adaptive responses following exposure to ionizing radiation. Hum Exp Toxicol 18: 426–432. doi: 10.1191/096032799678840309
[45]  Ugwu A, Imo A, Ikamaise V (2009) Effects of radiation: the paradigm shifts, adaptive response and bystander models. J Biomed Res 1: 61–66.
[46]  Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, et al. (2013) Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians' offspring. Age 35: 1961–1973. doi: 10.1007/s11357-012-9463-1
[47]  Johansson ?, Enroth S, Gyllensten U (2013) Continuous Aging of the Human DNA Methylome Throughout the Human Lifespan. PLOS ONE 8: e67378. doi: 10.1371/journal.pone.0067378
[48]  Lange NE, Sordillo J, Tarantini L, Bollati V, Sparrow D, et al. (2012) Alu and LINE-1 methylation and lung function in the normative ageing study. BMJ Open 2: e001231. doi: 10.1136/bmjopen-2012-001231
[49]  Cherif H, Tarry J, Ozanne S, Hales C (2003) Ageing and telomeres: A study into organ-and gender-specific telomere shortening. Nucleic Acids Res 31: 1576–1583. doi: 10.1093/nar/gkg208
[50]  Sauer J, Jang H, Zimmerly EM, Kim K-c, Liu Z, et al. (2010) Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon. Br J Nutr 104: 1–7. doi: 10.1017/s0007114510000322
[51]  Singhal RP, Mays-Hoopes LL, Eichhorn GL (1987) DNA methylation in aging of mice. Mech Ageing Dev 41: 199–210. doi: 10.1016/0047-6374(87)90040-6
[52]  Wilson VL, Smith RA, Ma S, Cutler RG (1987) Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262: 9948–9951.
[53]  Day TK, Hooker AM, Zeng G, Sykes PJ (2007) Low dose X-radiation adaptive response in spleen and prostate of Atm knockout heterozygous mice. Int J Radiat Biol 83: 523–534. doi: 10.1080/09553000701420582
[54]  Hooker A, Bhat M, Day T, Lane J, Swinburne S, et al. (2004) The linear no-threshold model does not hold for low-dose ionizing radiation. Radiat Res 162: 447–452. doi: 10.1667/rr3228
[55]  Horie K, Kubo K, Yonezawa M (2002) p53 dependency of radio-adaptive responses in endogenous spleen colonies and peripheral blood-cell counts in C57BL mice. J Radiat Res 43: 353–360. doi: 10.1269/jrr.43.353
[56]  Yoshida N, Imada H, Kunugita N, Norimura T (1993) Low dose radiation-induced adaptive survival response in mouse spleen T-lymphocytes in vivo. J Radiat Res 34: 269–276. doi: 10.1269/jrr.34.269
[57]  Kovalchuk O, Ponton A, Filkowski J, Kovalchuk I (2004) Dissimilar genome response to acute and chronic low-dose radiation in male and female mice. Mutat Res 550: 59–72. doi: 10.1016/j.mrfmmm.2004.02.007
[58]  Raiche J, Rodriguez-Juarez R, Pogribny I, Kovalchuk O (2004) Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun 325: 39–47. doi: 10.1016/j.bbrc.2004.10.002
[59]  Azzam E, De Toledo S, Raaphorst G, Mitchel R (1996) Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T1/2 cells. Radiat Res 146: 369–373. doi: 10.2307/3579298
[60]  Azzam E, Raaphorst G, Mitchel R (1994) Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10T1/2 mouse embryo cells. Radiat Res 138: 28–31. doi: 10.2307/3578755
[61]  Broome EJ, Brown DL, Mitchel RE (2002) Dose responses for adaption to low doses of (60)Co gamma rays and (3)H beta particles in normal human fibroblasts. Radiat Res 158: 181–186. doi: 10.1667/0033-7587(2002)158[0181:drfatl]2.0.co;2
[62]  Elmore E, Lao XY, Kapadia R, Giedzinski E, Limoli C, et al. (2008) Low doses of very low-dose-rate low-LET radiation suppress radiation-induced neoplastic transformation in vitro and induce an adaptive response. Radiat Res 169: 311–318. doi: 10.1667/rr1199.1
[63]  Hashimoto S, Shirato H, Hosokawa M, Nishioka T, Kuramitsu Y, et al. (1999) The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat Res 151: 717–724. doi: 10.2307/3580211
[64]  Stoilov L, Mullenders L, Darroudi F, Natarajan A (2007) Adaptive response to DNA and chromosomal damage induced by X-rays in human blood lymphocytes. Mutagenesis 22: 117–122. doi: 10.1093/mutage/gel061
[65]  de Andrade A, Wang M, Bonaldo MF, Xie H, Soares MB (2011) Genetic and epigenetic variations contributed by Alu retrotransposition. BMC Genomics 12: 617. doi: 10.1186/1471-2164-12-617
[66]  Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic Deletions Created upon LINE-1 Retrotransposition. Cell 110: 315–325. doi: 10.1016/s0092-8674(02)00828-0
[67]  Belgnaoui SM, Gosden RG, Semmes OJ, Haoudi A (2006) Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int 6: 13. doi: 10.1186/1475-2867-6-13
[68]  Meischl C, Boer M, Ahlin A, Roos D (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8: 697–703. doi: 10.1038/sj.ejhg.5200523
[69]  Ogino S, Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, et al. (2008) LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 122: 2767–2773. doi: 10.1002/ijc.23470
[70]  Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta-Rev Cancer 1775: 138–162. doi: 10.1016/j.bbcan.2006.08.007
[71]  Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, et al. (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 21: 819–828. doi: 10.1097/ede.0b013e3181f20457
[72]  Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, et al. (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49: 1292–1296. doi: 10.1373/49.8.1292
[73]  Kim M, Long TI, Arakawa K, Wang R, Mimi CY, et al. (2010) DNA methylation as a biomarker for cardiovascular disease risk. PLOS ONE 5: e9692. doi: 10.1371/journal.pone.0009692
[74]  Bollati V, Galimberti D, Pergoli L, Dalla Valle E, Barretta F, et al. (2011) DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 25: 1078–1083. doi: 10.1016/j.bbi.2011.01.017
[75]  Mizugaki M, Yamaguchi T, Ishiwata S, Shindo H, Hishinuma T, et al. (1997) Alteration of DNA methylation levels in MRL lupus mice. Clin Exp Immunol 110: 265–269. doi: 10.1111/j.1365-2249.1997.tb08326.x
[76]  Lin C-H, Hsieh S-Y, Sheen I-S, Lee W-C, Chen T-C, et al. (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61: 4238–4243.
[77]  Stach D, Schmitz OJ, Stilgenbauer S, Benner A, D?hner H, et al. (2003) Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res 31: e2. doi: 10.1093/nar/gng002
[78]  Tawa R, Kimura Y, Komura J, Miyamura Y, Kurishita A, et al. (1998) Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J Radiat Res (Tokyo) 39: 271–278. doi: 10.1269/jrr.39.271
[79]  Filkowski JN, Ilnytskyy Y, Tamminga J, Koturbash I, Golubov A, et al. (2010) Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis 31: 1110–1115. doi: 10.1093/carcin/bgp300
[80]  Adalsteinsson BT, Gudnason H, Aspelund T, Harris TB, Launer LJ, et al. (2012) Heterogeneity in white blood cells has potential to confound DNA methylation measurements. PLOS ONE 7: e46705. doi: 10.1371/journal.pone.0046705
[81]  Wu HC, Delgado-Cruzata L, Flom JD, Kappil M, Ferris JS, et al. (2011) Global methylation profiles in DNA from different blood cell types. Epigenetics 6: 76–85. doi: 10.4161/epi.6.1.13391
[82]  Wu H-C, Wang Q, Delgado-Cruzata L, Santella RM, Terry MB (2012) Genomic methylation changes over time in peripheral blood mononuclear cell DNA: Differences by Assay Type and Baseline Values. Cancer Epidemiol Biomarkers Prev 21: 1314–1318. doi: 10.1158/1055-9965.epi-12-0300
[83]  El-Maarri O, Walier M, Behne F, van üüm J, Singer H, et al. (2011) Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLOS ONE 6: e16252. doi: 10.1371/journal.pone.0016252
[84]  Li W, Wang G, Cui J, Xue L, Cai L (2004) Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exp Hematol 32: 1088–1096. doi: 10.1016/j.exphem.2004.07.015
[85]  Wang G, Cai L (2000) Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol Sci 53: 369. doi: 10.1093/toxsci/53.2.369
[86]  Silini G, Andreozzi U (1974) Haematological changes in the ageing mouse. Exp Gerontol 9: 99–108. doi: 10.1016/0531-5565(74)90038-2
[87]  Giotopoulos G, McCormick C, Cole C, Zanker A, Jawad M, et al. (2006) DNA methylation during mouse hemopoietic differentiation and radiation-induced leukemia. Exp Hematol 34: 1462–1470. doi: 10.1016/j.exphem.2006.06.008
[88]  Goetz W, Morgan MNM, Baulch JE (2011) The effect of radiation quality on genomic DNA methylation profiles in irradiated human cell lines. Radiat Res 175: 575–587. doi: 10.1667/rr2390.1
[89]  Koturbash I, Pogribny I, Kovalchuk O (2005) Stable loss of global DNA methylation in the radiation-target tissue—a possible mechanism contributing to radiation carcinogenesis? Biochem Biophys Res Commun 337: 526–533. doi: 10.1016/j.bbrc.2005.09.084
[90]  Kovalchuk O, Burke P, Besplug J, Slovack M, Filkowski J, et al. (2004) Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 548: 75–84. doi: 10.1016/j.mrfmmm.2003.12.016
[91]  Kumar A, Rai PS, Upadhya R, Shama Prasada K, Satish Rao B, et al. (2011) γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines. Int J Radiat Biol 87: 1086–1096. doi: 10.3109/09553002.2011.605417
[92]  Pogribny I, Koturbash I, Tryndyak V, Hudson D, Stevenson SM, et al. (2005) Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res 3: 553–561. doi: 10.1158/1541-7786.mcr-05-0074
[93]  Pogribny I, Raiche J, Slovack M, Kovalchuk O (2004) Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320: 1253–1261. doi: 10.1016/j.bbrc.2004.06.081
[94]  Day T, Zeng G, Hooker A, Bhat M, Scott B, et al. (2006) Extremely low priming doses of X radiation induce an adaptive response for chromosomal inversions in pKZ1 mouse prostate. Radiat Res 166: 757–766. doi: 10.1667/rr0689.1
[95]  Day TK, Zeng G, Hooker AM, Bhat M, Scott BR, et al. (2007) Adaptive response for chromosomal inversions in pKZ1 mouse prostate induced by low doses of X radiation delivered after a high dose. Radiat Res 167: 682–692. doi: 10.1667/rr0764.1
[96]  Zeng G, Day T, Hooker A, Blyth B, Bhat M, et al. (2006) Non-linear chromosomal inversion response in prostate after low dose X-radiation exposure. Mutat Res-Fund Mol M 602: 65–73. doi: 10.1016/j.mrfmmm.2006.08.002
[97]  Iyer R, Lehnert BE (2002) Alpha-particle-induced increases in the radioresistance of normal human bystander cells. Radiat Res 157: 3–7. doi: 10.1667/0033-7587(2002)157[0003:apiiit]2.0.co;2
[98]  Shadley JD, Wolff S (1987) Very low doses of X-rays can cause human lymphocytes to become less susceptible to ionizing radiation. Mutagenesis 2: 95–96. doi: 10.1093/mutage/2.2.95
[99]  Wolff S, Afzal V, Wiencke J, Olivieri G, Michaeli A (1988) Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA. Int J Radiat Biol 53: 39–48. doi: 10.1080/09553008814550401
[100]  Danam RP, Qian XC, Howell SR, Brent TP (1999) Methylation of selected CpGs in the human O6-methylguanine-DNA methyltransferase promoter region as a marker of gene silencing. Mol Carcinog 24: 85–89. doi: 10.1002/(sici)1098-2744(199902)24:2<85::aid-mc2>3.3.co;2-3
[101]  Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, et al. (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22: 8835–8844. doi: 10.1038/sj.onc.1207183
[102]  Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35: e41. doi: 10.1093/nar/gkm013
[103]  Pogribny IP, Vanyushin BF (2010) Age-related genomic hypomethylation. Epigenetics of Aging: Springer. pp11–27.
[104]  Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS (2009) Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci USA 106: 20912–20917. doi: 10.1073/pnas.0911143106
[105]  Hunter RG, McEwen BS, Pfaff DW (2013) Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elements 3: e24555. doi: 10.4161/mge.24555
[106]  Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, et al. (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Resp Crit Care 179: 572–578. doi: 10.1164/rccm.200807-1097oc
[107]  Hagan CR, Sheffield RF, Rudin CM (2003) Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 35: 219–220. doi: 10.1038/ng1259

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133