全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Acute Pretreatment with Chloroquine Attenuates Renal I/R Injury in Rats

DOI: 10.1371/journal.pone.0092673

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Acute kidney injury (AKI) still remains an unresolved problem in pharmacotherapy and renal inflammation is a major factor in its development. Chloroquine, a well-known antimalarial drug, posses pleitropic effects as well: antiinflammatory, anticoagulant and vascular actions. The effects of chloroquine on renal function may involve significant increase in urine flow rate, glomerular filtration rate and sodium excretion, as well as stimulation of nitric oxide synthase. However, its role in experimental models of renal I/R injury is unknown. We aimed to analyze the acute effects of a single-dose intravenous chloroquine administered at three different times in the experimental model of I/R injury in rat. Methods Rats were subjected to bilateral renal ischemia (45 min) followed by reperfusion with saline lasting 4 hours. Chloroquine was administered in doses of 0.3 mg/kg i.v. and 3 mg/kg i.v. 30 min before ischemia, 30 min before reperfusion and 5 min before reperfusion. Selected a hemodynamic, biochemical and morphological parameters were followed in the Sham-operated animals and rats subjected to I/R injury and pretreated with saline or chloroquine. Results Chloroquine (0.3 and 3 mg/kg, i.v.) protected the I/R injured kidney in an U-shaped manner. Both doses were protective regarding biochemical and histological markers of the I/R injury (serum urea, creatinine and fractional excretion of sodium, as well as total histological score, tubular necrosis score and KIM-1 staining score) (P<0.05 vs. corresponding controls, i.e. rats subjected to I/R injury and treated with saline only). The protective effects of the lower dose of chloroquine were more profound. Time-related differences between pretreatments were not observed (P>0.05, all). Conclusion Our study shows for the first time that a single dose of chloroquine (0.3 mg/kg i.v.) could afford significant protection of the injured rat kidney.

References

[1]  Bellomo R, Ronco C, Kellum A, Mehta RI, Palevsky P (2004) Acute renal failure-definition, outcome measures, animal models, fluid therapy and informatiom technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care 8(4): 204–212.
[2]  Kunzendorf U, Haase M, Rolver L, Haase-Fielitz A (2010) Novel aspects of pharmacological therapies for acute renal failure. Drugs 70 (9): 1099–1114. doi: 10.2165/11535890-000000000-00000
[3]  Chatterjee PK, Hawksworth GM, McLay JS (1999) Cytokine-stimulated nitric oxide production in human renal proximal tubule and its modulation by natriuretic peptides: a novel immunomodulatory mechanism? Exp Nephrol 7: 438–448. doi: 10.1159/000020623
[4]  Couser WG (1998) Pathogenesis of glomerular damage in glomerulonephritis. Nephrol Dial Transplant 13: 10–15. doi: 10.1093/ndt/13.suppl_1.10
[5]  Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, et al. (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71: 619–628. doi: 10.1038/sj.ki.5002132
[6]  Thurman JM (2007) Triggers of inflammation after renal ischemia-reperfusion. Clin Immunol 123: 7–13. doi: 10.1016/j.clim.2006.09.008
[7]  Garcia-Criado FJ, Eleno N, Santos-Benito F, Valdunciel JJ, Reverte M, et al. (1998) Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplantation 66: 982–990. doi: 10.1097/00007890-199810270-00003
[8]  Chatterjee PK (2007) Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn-Schmiedeberg's Arch Pharmacol 376: 1–43. doi: 10.1007/s00210-007-0183-5
[9]  Ahmed MH, Ashton N, Balment RJ (2003) The effect of chloroquine on renal function and vasopressin secretion: a nitric oxide-dependent effect. J Pharmacol Exp Ther 304: 156–161. doi: 10.1124/jpet.102.042523
[10]  Cooper RG, Magwere T (2008) Chloroquine: novel uses & manifestations. Indian J Med Res 127: 305–316.
[11]  Ahmed MH, Ashton N, Balment RJ (2003) Renal function in a rat model of analgesic nephropathy: effect of chloroquine. J Pharmacol Exp Ther 305: 123–130. doi: 10.1124/jpet.102.047233
[12]  Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systemic review. Kidney Int 73: 1008–1016. doi: 10.1038/sj.ki.5002729
[13]  Vaidya VS, Ford GM, Waikar SS, Wang Y, Clement MB, et al. (2009) A rapid urine test for early detection of kidney injury. Kidney Int 76: 108–114. doi: 10.1038/ki.2009.96
[14]  Todorovi? Z, Prostran M, Ne?i? Z, Stojanovi? R, Stojanov M (2009) The influence of drugs on biochemical markers of ischemia-reperfusion injury. In: Injac R, ed. The Analysis of Pharmacologically Active Compounds and Biomolecules in Real Samples. Kerala (India) Transworld Research Network. pp. 217–238.
[15]  Martensson J, Martling CR, Bell M (2012) Novel biomarkers of acute kidney injury and failure: clinical applicability. Br J Anaesth 109 (6): 843–50. doi: 10.1093/bja/aes357
[16]  Tsigou E, Psallida V, Demponeras C, Boutzouka E, Baltopoulos G (2013) Role of new biomarkers: functional and structural damage – review article. Critical Care Research and Practice http://dx.doi.org/10.1155/2013/361078
[17]  Ne?i? Z, Todorovi? Z, Stojanovi? R, Basta-Jovanovi? G, Radojevi? ?kodri? S, et al. (2006) Single-dose intravenous simvastatin treatment attenuates renal injury in an experimental model of ischemia-reperfusion in the rat. J Pharmacol Sci 102(4): 413–417. doi: 10.1254/jphs.sce06002x
[18]  Ne?i? Z, Todorovi? Z, Stojanovi? R, Basta-Jovanovi? G, Radojevi? ?kodri? S, et al. (2008) Acute protective effects of diferent doses of simvastatin in the model of ischemia-reperfusion injury. Acta Veterinaria 58 (5–6): 413–427. doi: 10.2298/avb0806413n
[19]  Todorovi? Z, Ne?i? Z, Stojanovi? R, Basta-Jovanovi? G, Radojevi? ?kodri? S, et al. (2008) Acute protective effects of simvastatin in the rat model of renal ischemia-reperfusion injury: it is never too late for the pretreatment. J Pharmacol Sci 107: 465–470. doi: 10.1254/jphs.sc0070374
[20]  Solez K, Morel-Maroger L, Sraer JD (1979) The morphology of acute tubular necrosis in man: analysis of 57 renal biopsies and a comparasion with the glycerol model. Medicine 58: 362–366. doi: 10.1097/00005792-197909000-00003
[21]  Stephen FA, Thomas LM, Sch?ffer AA, Zhang J, Zheng Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25: 3389–3402. doi: 10.1093/nar/25.17.3389
[22]  Stephen FA, Wootton JC, Gertz ME, Agarwala R, Morgulis A, et al. (2005) Protein database searches using compositionally adjusted substitution matrices, FEBS J. 272: 5101–5109. doi: 10.1111/j.1742-4658.2005.04945.x
[23]  Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, et al. (2008) Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int 73: 608–614. doi: 10.1038/sj.ki.5002697
[24]  Chatterjee PK, Thiemermann C (2003) An in vivo model of ischemia/reperfusion and inflammation of the kidney of the rat. In: Winzard PG, Willoughby DA (eds.), Methods in Molecular Biology, Totowa, NJ: Humana Press Inc. pp. 223–37.
[25]  Holschermann H, Schuster D, Parviz B, Haberbosch W, Tillmanns H, et al. (2006) Statins prevent NF-kB transactivation independently of the IKK-pathway in human endothelial cells. Artherosclerosis 185: 240–5. doi: 10.1016/j.atherosclerosis.2005.06.019
[26]  Lamiere N, Van Biesen W, Vanholder R (2005) Acute renal failure, Lancet. 365: 417–30. doi: 10.1016/s0140-6736(05)17831-3
[27]  Rouschop KM, Leemans JC (2008) Ischemia-reperfusion treatment: opportunities point to modulation of the inflammatory response. Kidney Int 73: 1333–5. doi: 10.1038/ki.2008.156
[28]  Wozniacka A, Lesiak A, Narbutt J, Kobos J, Pavel S, et al. (2007) Chloroquine treatment reduces the number of cutaneous HLA-DR+ and Cd1a+ cells in patients with systemic lupus erythematosus. Lupus 16: 89–94. doi: 10.1177/0961203306075384
[29]  Van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL (1997) Chloroquine and hydrochloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripherial blood mononuclear cells. J Rheumatol 24: 55–60.
[30]  Petri M (1996) Hydroxychloroquine use in the Baltimor Lupus Cohort: effects on lipids, glucose and thrombosis review. Lupus 1(5 Suppl): S16–22.
[31]  Wallace DJ (1987) Does hydroxychloroquine sulfate prevent clot formation in systemic lupus erythematosus (letter). Arthritis Rheum 30: 1435–6. doi: 10.1002/art.1780301219
[32]  Petri M (1996) Thrombosis and systemic lupus erythematosus:the Hopkins lupus Cohort perspective. Scand J Rheumatol 25: 191–3. doi: 10.3109/03009749609069986
[33]  Magwere T, Naik Yogeshkumar SN, Hasler JA (1997) Effects of chloroquine treatment on antioxidant enzymes in rat liver and kidney. Free Radic Bio Med 22 (1-2): 321–327. doi: 10.1016/s0891-5849(96)00285-7
[34]  Gerstein HC, Thorpe KE, Taylor DW, Haynes RB (2002) The effectiveness of hydroxichloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas: a randomized trial. Diabetes Res Clin Pract 55: 209–19. doi: 10.1016/s0168-8227(01)00325-4
[35]  Bevan AP, Krook A, Tikerpae J, Seabright PJ, Siddle K, et al. (1997) Chloroquine extends the lifetime of the activated insulin receptor complex in endosomes. J Biol Chem 272: 26833–40. doi: 10.1074/jbc.272.43.26833
[36]  Chiodini P, et al.. (2009) HPA Advisory Committee on Malaria Prevention in UK Travellers. Guidelines for malaria prevention in travellers from the United Kingdom (issued 01/07). Available at: Link (Accessed 2012 September 4).
[37]  Sofola OA, Olude IO, Adegoke F (1981) The effects of chronic chloroquine toxicity on blood pressure of rats. J Trop Med Hyg 84: 249–52.
[38]  Ichimura T, Bonventre JV, Bailly V, et al. (1998) Kidney injury molecule (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273 (7): 4156–4142. doi: 10.1074/jbc.273.7.4135
[39]  Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, et al. (2008) Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 118: 1657–1668. doi: 10.1172/jci34487
[40]  Bonventre JV (2009) Kidney injury molecule (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant 24: 3265–3268. doi: 10.1093/ndt/gfp010
[41]  Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286: 552–563. doi: 10.1152/ajprenal.00285.2002
[42]  Urbaschat A, Obermuller N, Haferkamp A (2011) Biomarkers of kidney injury. Biomarkers 16 (Suppl. 1)S22–30. doi: 10.3109/1354750x.2011.587129
[43]  Vaidya VS, Ferguson MA, Bonventre JV (2008) Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 48: 463–493. doi: 10.1146/annurev.pharmtox.48.113006.094615
[44]  Edelstein CL (2008) Biomarkers of acute kidney injury. Adv Chronic Kidney Dis 15: 222–234. doi: 10.1053/j.ackd.2008.04.003
[45]  Slocum JL, Heung M, Pennathur S (2012) Marking renal injury: can we move beyond serum creatinine? Transl Res 159: 277–289. doi: 10.1016/j.trsl.2012.01.014
[46]  McDuffie JE, Ma JY, Sablad M, Sonee M, Varacallo L, et al. (2013) Time course of renal proximal tubule injury, reversal, and related biomarker changes in rats following cisplatin administration. Int J Toxicol 32(4): 251–60. doi: 10.1177/1091581813493013
[47]  Gustafsson LL, Walker O, Alvan G, Beermann B, Estevez F, et al. (1983) Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol 15: 471–9. doi: 10.1111/j.1365-2125.1983.tb01532.x
[48]  Musabayane CT, Ndhlovu CE, Mamutse G, Bwititi P, Balment RJ (1993) Acute chloroquine administration increases renal sodium excretion. J Trop Med Hyg 96: 305–10.
[49]  Musabayane CT, Windle RJ, Forling ML, Balment RJ (1996) Arginine vasopressin mediates the chloroquine induced increase in renal sodium excretion. Trop Med Int Health 1: 542–50. doi: 10.1046/j.1365-3156.1996.d01-81.x
[50]  Ahmed MH, Osman MM (2007) Why does chloroquine impair renal function, chloroquine may modulate the renal tubular response to vasopressin either directly by inhibiting cyclic AMP generation, or indirectly via nitric oxide. Med Hypotheses 68: 140–3. doi: 10.1016/j.mehy.2006.06.012
[51]  Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G, et al. (1998) Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human epithelial cells. J Clin Invest 102: 595–605. doi: 10.1172/jci1052
[52]  Weber SM, Levitz SM (2000) Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol 165: 1534–40. doi: 10.4049/jimmunol.165.3.1534
[53]  Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, et al. (1993) Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha (IL-1-alpha) and IL-6 in human monocytes and T cells. J Rheumatol 20(5): 803–8.
[54]  Yasuda H, Leelahavanichkul A, Tsunoda S, Dear JW, Takahashi Y, et al. (2008) Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 294(5): F1050–F1058. doi: 10.1152/ajprenal.00461.2007
[55]  Thome R, Moraes AS, Bombeiro AL, Farias AS, Francelin C, et al. (2013) Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis PlosOne. 8(6): e65913. doi: 10.1371/journal.pone.0065913
[56]  Nujic K, Banjanac M, Munic V, Polancec D, Erakovic Haber V (2012) Impairement of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype. Cell immunol 279(1): 78–86. doi: 10.1016/j.cellimm.2012.09.007
[57]  Kalla S, Dutz JP (2007) New conceptions in antimalarial use and mode of action. Dermatol Ther 20: 160–74. doi: 10.1111/j.1529-8019.2007.00131.x
[58]  Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176 (3): 1181–92. doi: 10.2353/ajpath.2010.090594
[59]  Jiang M, Wei Q, Dong G, Komatsu M, Su Y, et al. (2012) Autophagy in proximal tubules protects against acute kifney injury. Kidney Int 82 (12): 1271–83. doi: 10.1038/ki.2012.261
[60]  Fang H, Liu A, Dahmen U, Dirsch O (2013) Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase. Cell Death Dis doi: 10.1038/cddis.2013.225
[61]  Harhaji-Trajkovic L, Arsikin K, Kravic-Stevovic T, Petricevic S, Tovilovoc G, et al. (2012) Chloroquine-mediated lysosomal dysfunction enhances the anticancer effects of nutrient deprivation. Pharm Res 29 (8): 2249–63. doi: 10.1007/s11095-012-0753-1
[62]  Solomon RJ, Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur Jour of Pharm 625: 220–233. doi: 10.1016/j.ejphar.2009.06.063

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133