全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Genomic and Phenotypic Characterization of Vibrio cholerae Non-O1 Isolates from a US Gulf Coast Cholera Outbreak

DOI: 10.1371/journal.pone.0086264

Full-Text   Cite this paper   Add to My Lib

Abstract:

Between November 2010, and May 2011, eleven cases of cholera, unrelated to a concurrent outbreak on the island of Hispaniola, were recorded, and the causative agent, Vibrio cholerae serogroup O75, was traced to oysters harvested from Apalachicola Bay, Florida. From the 11 diagnosed cases, eight isolates of V. cholerae were isolated and their genomes were sequenced. Genomic analysis demonstrated the presence of a suite of mobile elements previously shown to be involved in the disease process of cholera (ctxAB, VPI-1 and -2, and a VSP-II like variant) and a phylogenomic analysis showed the isolates to be sister taxa to toxigenic V. cholerae V51 serogroup O141, a clinical strain isolated 23 years earlier. Toxigenic V. cholerae O75 has been repeatedly isolated from clinical cases in the southeastern United States and toxigenic V. cholerae O141 isolates have been isolated globally from clinical cases over several decades. Comparative genomics, phenotypic analyses, and a Caenorhabditis elegans model of infection for the isolates were conducted. This analysis coupled with isolation data of V. cholerae O75 and O141 suggests these strains may represent an underappreciated clade of cholera-causing strains responsible for significant disease burden globally.

References

[1]  Ko WC, Chuang YC, Huang GC, Hsu SY (1998) Infections due to non-O1 Vibrio cholerae in southern Taiwan: predominance in cirrhotic patients. Clin Infect Dis 27: 774–780. doi: 10.1086/514947
[2]  Safrin S, Morris JG Jr, Adams M, Pons V, Jacobs R, et al. (1988) Non-O:1 Vibrio cholerae bacteremia: case report and review. Rev Infect Dis 10: 1012–1017. doi: 10.1093/clinids/10.5.1012
[3]  Shannon JD, Kimbrough RC (2006) Pulmonary Cholera Due to Infection with a Non-O1 Vibrio cholerae Strain. J Clin Microbiol 44: 3459–3460. doi: 10.1128/jcm.02343-05
[4]  Lukinmaa S, Mattila K, Lehtinenc V, Hakkinen M, Koskela M, et al. (2006) Territorial waters of the Baltic Sea as a source of infections caused by Vibrio cholerae non-O1, non-O139: report of 3 hospitalized cases. Diagn Micr Infec Dis 54: 1–6. doi: 10.1016/j.diagmicrobio.2005.06.020
[5]  Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, et al. (2009) Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 47: 1087–1095. doi: 10.1128/jcm.02026-08
[6]  Hasan NA, Choi SY, Eppinger M, Clark PW, Chen A, et al. (2012) Genomic diversity of 2010 Haitian cholera outbreak strains. Proc Natl Acad Sci USA 109(29): E2010–E2017. doi: 10.1073/pnas.1207359109
[7]  Marin MA, Thompson CC, Freitas FS, Fonseca EL, Aboderin AO, et al. (2013) Cholera Outbreaks in Nigeria Are Associated with Multidrug Resistant Atypical El Tor and Non-O1/Non-O139 Vibrio cholerae. PLoS Negl Trop Dis 7 ((2)) e2049. doi: 10.1371/journal.pntd.0002049
[8]  Tacket C, Taylor R, Losonsky G, Lim Y, Nataro J, et al. (1998) Investigation of the Roles of Toxin-Coregulated Pili and Mannose-Sensitive Hemagglutinin Pili in the Pathogenesis of Vibrio cholerae O139 Infection. Infect Immun 66 ((2)) 692–695.
[9]  Vanden Broeck D, Horvath C, De Wolf M (2007) Vibrio cholerae: Cholera toxin. Int J Biochem Cell Biol 39 ((10)) 1771–1775. doi: 10.1016/j.biocel.2007.07.005
[10]  Almagro-Moreno S, Boyd EF (2009) Sialic Acid Catabolism Confers a Competitive Advantage to Pathogenic Vibrio cholerae in the Mouse Intestine. Infect Immun 77 ((9)) 3807–3816. doi: 10.1128/iai.00279-09
[11]  Manning S, Motiwala A, Springman A, Qi W, Lacher D, et al. (2008) Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci USA ((12)) 4868–4873. doi: 10.1073/pnas.0710834105
[12]  Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, et al. (2009) Comparative Genomics Reveals Mechanism for Short-term and Long-term Clonal Transitions in Pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106: 15442–15447. doi: 10.1073/pnas.0907787106
[13]  Meibom K, Li X, Nielsen A, Wu C, Roseman S, et al. (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101 ((8)) 2524–2529. doi: 10.1073/pnas.0308707101
[14]  Udden S, Zahid M, Biswas K, Ahmad Q, Cravioto A, et al. (2008) Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA 105 ((33)) 11951–11956. doi: 10.1073/pnas.0805560105
[15]  Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, et al. (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio 2 ((2)) e00335–10. doi: 10.1128/mbio.00335-10
[16]  Hlady W, Klontz K (1996) The Epidemiology of Vibrio Infections in Florida, 1981–1993. J Infect Dis 173 ((5)) 1176–1183. doi: 10.1093/infdis/173.5.1176
[17]  Shapiro R, Altekruse S, Hutwagner L, Bishop R, Hammond R, et al. (1998) The Role of Gulf Coast Oysters Harvested in Warmer Months in Vibrio vulnificus Infections in the United States, 1988–1996. J Infect Dis 178 ((3)) 752–759. doi: 10.1086/515367
[18]  Tamplin M (2001) Coastal Vibrios: Identifying Relationships between Environmental Condition and Human Disease. Human and Ecological Risk Assessment: An International Journal 7 ((5)) 1437–1445. doi: 10.1080/20018091095113
[19]  Lipp E, Huq A, Colwell R (2002) Effects of Global Climate on Infectious Disease: the Cholera Model. Clin Microbiol Rev 15 ((4)) 757–770. doi: 10.1128/cmr.15.4.757-770.2002
[20]  Huq A, Sack R, Nizam S, Longini I, Nair G, et al. (2005) Critical Factors Influencing the Occurrence of Vibrio cholerae in the Environment of Bangladesh. Appl Environ Microbiol 71 ((8)) 4645–4654. doi: 10.1128/aem.71.8.4645-4654.2005
[21]  Tobin-D'Angelo M, Smith A, Bulens S, Thomas S, Hodel M, et al. (2008) Severe Diarrhea Caused by Cholera Toxin–Producing Vibrio cholerae Serogroup O75 Infections Acquired in the Southeastern United States. Clin Infect Dis 47 ((8)) 1035–1040. doi: 10.1086/591973
[22]  Onifade T, Hutchinson R, Van Zile K, Bodager D, Baker R, et al. (2011) Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Euro Surveill 16 ((20)) 19870.
[23]  Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. doi: 10.1186/1471-2164-9-75
[24]  Choi SY, Lee JH, Kim EJ, Lee HR, Jeon Y, et al. (2010) Classical RS1 and environmental RS1 elements in Vibrio cholerae O1 El Tor strains harbouring a tandem repeat of CTX prophage: revisiting Mozambique in 2005. J Med Microbiol 59: 302–308. doi: 10.1099/jmm.0.017053-0
[25]  Vora G, Meador M, Bird M, Bopp C, Andreadis J, et al. (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc Natl Acad Sci USA 102 ((52)) 19109–19114. doi: 10.1073/pnas.0505033102
[26]  Nusrin S, Khan GY, Bhuiyan NA, Ansaruzzaman M, Hossain MA, et al. (2004) Diverse CTX phages among toxigenic Vibrio cholerae O1 and O139 strains isolated between 1994 and 2002 in an area where cholera is endemic in Bangladesh. J Clin Microbiol 42: 5854–5856. doi: 10.1128/jcm.42.12.5854-5856.2004
[27]  Son MS, Taylor RK (2011) Genetic Screens and Biochemical Assays to Characterize Vibrio cholerae O1 Biotypes: Classical and El Tor. Curr Protoc Microbiol 22: 6A.2.1–6A.2.17. doi: 10.1002/9780471729259.mc06a02s22
[28]  Sprando R, Olejnik N, Cinar H, Ferguson M (2009) A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a Complex Object Parametric Analyzer and Sorter, and axenic liquid media. Food and Chemical Toxicology 47 ((4)) 722–728. doi: 10.1016/j.fct.2009.01.007
[29]  Cinar HN, Kothary M, Datta AR, Tall BD, Sprando R, et al. (2010) Vibrio cholerae Hemolysin Is Required for Lethality, Developmental Delay, and Intestinal Vacuolation in Caenorhabditis elegans. PLoS ONE 5 ((7)) e11558. doi: 10.1371/journal.pone.0011558
[30]  Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, et al. (2001) Clinical and Environmental Isolates of Vibrio cholerae Serogroup O141 Carry the CTX Phage and the Genes Encoding the Toxin-Coregulated Pili. J Clin Microbiol 39 ((11)) 4086–4092. doi: 10.1128/jcm.39.11.4086-4092.2001
[31]  Crump JA, Bopp CA, Greene KD, Kubota KA, Middendorf RL, et al. (2003) Toxigenic Vibrio cholerae serogroup O141-associated cholera-like diarrhea and bloodstream infection in the United States. J Infect Dis 187 ((5)) 866–8. doi: 10.1086/368330
[32]  Blake PA, Allegra DT, Snyder JD, Barrett TJ, McFarland L, et al. (1980) Cholera–a possible endemic focus in the United States. N Engl J Med 302 ((6)) 305–309. doi: 10.1056/nejm198002073020601
[33]  Lin FY, Morris JG Jr, Kaper JB, Gross T, Michalski J, et al. (1986) Persistence of cholera in the United States: isolation of Vibrio cholerae O1 from a patient with diarrhea in Maryland. J Clin Microbiol 23 ((3)) 624–6.
[34]  Nair GB, Qadri F, Holmgren J, Svennerholm AM, Safa A, et al. (2006) Cholera due to altered El Tor strains of Vibrio cholerae O1 in Bangladesh. J Clin Microbiol 44: 4211–3. doi: 10.1128/jcm.01304-06
[35]  Safa A, Sultana J, Cam PD, Mwansa JC, Kong RYC (2008) Classical cholera toxin producing Vibrio cholerae O1 hybrid El Tor strains in Asia and Africa. Emerg Infect Dis 14: 987–8. doi: 10.3201/eid1406.080129
[36]  Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272 ((5270)) 1910–4. doi: 10.1126/science.272.5270.1910
[37]  Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187 ((10)) 3551–5. doi: 10.1128/jb.187.10.3551-3555.2005
[38]  Murphy RA, Boyd EF (2008) Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol 190 ((2)) 636–47. doi: 10.1128/jb.00562-07
[39]  Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT, et al. (2011) Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio 2 ((3)) e00106–11. doi: 10.1128/mbio.00106-11
[40]  Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M, et al. (2013) Horizontal gene transfer of a genetic island encoding a type III secretion system distributed in Vibrio cholerae. Microbiol Immunol 57 ((5)) 334–9. doi: 10.1111/1348-0421.12039
[41]  Choi SY, Hasan NA, Chun J, Hoq M, Huq A, et al.. (2011) Comparative Genomic MGE finding process streamlines mobile element search. ASM Biodefense and Emerging Pathogens Research Meeting. Washington, DC.
[42]  Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84 ((5–6)) 499–510. doi: 10.1016/s0300-9084(02)01422-0
[43]  Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24 ((1)) 34–35. doi: 10.1016/s0968-0004(98)01336-x
[44]  Haley BJ, Grim CJ, Hasan NA, Choi SY, Chun J, et al. (2010) Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae. BMC Microbiol 10: 154. doi: 10.1186/1471-2180-10-154
[45]  Taviani E, Grim CJ, Choi J, Chun J, Haley B, et al. (2010) Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis. FEMS Microbiol Lett 308 ((2)) 130–7. doi: 10.1111/j.1574-6968.2010.02008.x
[46]  Dumontier S, Berche P (1998) Vibrio cholerae O22 might be a putative source of exogenous DNA resulting in the emergence of the new strain of Vibrio cholerae O139. FEMS Microbiol Lett 164 ((1)) 91–98. doi: 10.1111/j.1574-6968.1998.tb13072.x
[47]  Yamasaki S, Shimizu T, Hoshino K, Ho S, Shimada T, et al. (1999) The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene 237 ((2)) 321–332. doi: 10.1016/s0378-1119(99)00344-3
[48]  Halpern M, Gancz H, Broza M, Kashi Y (2003) Vibrio cholerae hemagglutinin/protease degrades chironomid egg masses. Appl Environ Microbiol 69 ((7)) 4200–4204. doi: 10.1128/aem.69.7.4200-4204.2003
[49]  Krukonis ES, DiRita VJ (2003) From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol 6: 186–190. doi: 10.1016/s1369-5274(03)00032-8
[50]  Silva AJ, Leitch GJ, Camilli A, Benitez JA (2006) Contribution of Hemagglutinin/Protease and Motility to the Pathogenesis of El Tor Biotype Cholera. Infect Immun 74 ((4)) 2072–2079. doi: 10.1128/iai.74.4.2072-2079.2006
[51]  Shinoda S (2011) Proteases Produced by Vibrio cholerae and Other Pathogenic Vibrios: Pathogenic Roles and Expression. In Epidemiological and Molecular Aspects on Cholera, Infectious Disease. Ramamurthy, T., Bhattacharya, S.K. (eds.) New York, NY: Springer Science, pp. 245–258.
[52]  Hall RH, Drasar BS (1990) Vibrio cholerae HlyA hemolysin is processed by proteolysis. Infect Immun 58 ((10)) 3375–9.
[53]  L?ng H, Jonson G, Holmgren J, Palva ET (1994) The maltose regulon of Vibrio cholerae affects production and secretion of virulence factors. Infect Immun 62 ((11)) 4781–8.
[54]  Ghosh R, Nair GB, Tang L, Morris JG, Sharma NC, et al. (2008) Epidemiological study of Vibrio cholerae using variable number of tandem repeats. FEMS Microbiol Lett 288: 196–201. doi: 10.1111/j.1574-6968.2008.01352.x
[55]  Mohamed AA, Oundo J, Kariuki SM, Boga HI, Sharif SK, et al. (2012) Molecular epidemiology of geographically dispersed Vibrio cholerae O1, Kenya, January 2009–May 2010. Emerg Infect Dis 18 ((6)) 925–931. doi: 10.3201/eid1806.111774
[56]  Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, et al. (2013) Population Structure and Evolution of Non-O1/Non-O139 Vibrio cholerae by Multilocus Sequence Typing. PLoS ONE 8 ((6)) e65342. doi: 10.1371/journal.pone.0065342

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133