全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Inferring the Gene Network Underlying the Branching of Tomato Inflorescence

DOI: 10.1371/journal.pone.0089689

Full-Text   Cite this paper   Add to My Lib

Abstract:

The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

References

[1]  Thouet J, Quinet M, Ormenese S, Kinet JM, Périlleux C (2008) Revisiting the involvement of self-pruning in the sympodial growth of tomato. Plant Physiology 148: 61–64. doi: 10.1104/pp.108.124164
[2]  Szymkowiak E, Irish E (2005) Jointless suppresses sympodial identity in inflorescence meristems of tomato. Planta 223: 646–658. doi: 10.1007/s00425-005-0115-x
[3]  Park SJ, Jiang K, Schatz M, Lippman Z (2012) Rate of meristem maturation determines inflorescence architecture in tomato. Proceedings of the National Academy of Sciences 109: 639–644. doi: 10.1073/pnas.1114963109
[4]  Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies arabidopsis leaf development. Plant Cell 20: 2293–2306. doi: 10.1105/tpc.107.057521
[5]  D'haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707–726. doi: 10.1093/bioinformatics/16.8.707
[6]  Lee WP, Tzou WS (2009) Computational methods for discovering gene networks from expression data. Briefings in bioinformatics 10: 408–423. doi: 10.1093/bib/bbp028
[7]  Gupta R, Stincone A, Antczak P, Durant S, Bicknell R, et al. (2011) A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC Systems Biology 5. doi: 10.1186/1752-0509-5-52
[8]  Marbach D, Prill R, Schaffter T, Mattiussi C, Floreano D, et al. (2010) Revealing strengths and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences 107: 6286–6291. doi: 10.1073/pnas.0913357107
[9]  Stumpf M, Balding D, Girolami M (2011) Handbook of Statistical Systems Biology. John Wiley & Sons Inc.
[10]  Marbach D, Küffner Costello RJ, Vega N, Prill R, Camacho D, et al. (2012) Wisdom of crowds for robust gene network inference. Nature Methods 9: 796–804. doi: 10.1038/nmeth.2016
[11]  Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, et al. (2005) Reverse engineering of regulatory networks in human b cells. Nature Genetics 37: 382–390. doi: 10.1038/ng1532
[12]  Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20: 3594–3603. doi: 10.1093/bioinformatics/bth448
[13]  Voit E, Marino S, Lall R (2005) Challenges for the identification of biological systems from in vivo time series data. In Silico Biology 5: 83–92.
[14]  Bansal M, Gatta G, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22: 815–822. doi: 10.1093/bioinformatics/btl003
[15]  Weber M, Henkel S, Vlaic S, Guthke R, van Zoelen E, et al. (2013) Inference of dynamical generegulatory networks based on time-resolved multi-stimuli multi-experiment data applying netgenerator v2.0. BMC Systems Biology 7: 39–46. doi: 10.1186/1752-0509-7-1
[16]  Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M (2009) Approximate bayesian computation scheme for parameter inference and model selection in dynamical systems. Interface 6. doi: 10.1098/rsif.2008.0172
[17]  Akaike H (1969) Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics 21: 243–247. doi: 10.1007/bf02532251
[18]  Akutsu T, Miyano S, Kuhara S (2000) Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16: 727–734. doi: 10.1093/bioinformatics/16.8.727
[19]  D'haeseleer P, Wen X, Fuhrman S, Somogyi R (1999) Linear modeling of mRNA expression levels during CNS development and injury. Pacific Symposium of Biocomputing 4: 41–52. doi: 10.1142/9789814447300_0005
[20]  Schmidt H, Cho KH, Jacobsen E (2005) Identification of small scale biochemical networks based on general type system perturbations. The FEBS Journal 272: 2141–2151. doi: 10.1111/j.1742-4658.2005.04605.x
[21]  Dielen V, Marc D, Kinet JM (1998) Flowering in the uniflora mutant of tomato (lycopersicon esculentum mill.): description of the reproductive structure and manipulation of flowering time. Plant Growth Regulation 25: 149–157.
[22]  Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, et al. (2002) The tomato blind gene encodes a myb transcription factor that controls the formation of lateral meristems. Proceedings of the National Academy of Sciences of the United States 99: 1064–1069. doi: 10.1073/pnas.022516199
[23]  Szymkowiak E, Irish E (1999) Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11: 159–175. doi: 10.2307/3870848
[24]  Molinero-Rosales N, Jamilena M, Zurita S, Gómez P, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant Journal 20: 685–693. doi: 10.1046/j.1365-313x.1999.00641.x
[25]  Allen K, Sussex I (1996) Falsiflora and anantha control early stages of floral meristem development in tomato (lycopersicon esculentum mill.). Planta 200: 254–264. doi: 10.1007/bf00208316
[26]  Quinet M, Dielen V, Batoko H, Boutry M, Havelange A, et al. (2006) Genetic interactions in the control of flowering time and reproductive structure development in tomato solanum lycopersicum. New Phytologist 170: 701–710. doi: 10.1111/j.1469-8137.2006.01717.x
[27]  MacAlister C, Park SJ, Jiang K, F M, Bendahmane A, et al. (2012) Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nature Genetics 44: 13931398. doi: 10.1038/ng.2465
[28]  Samach A, Lotan H (2007) The transition to flowering in tomato. Plant Biotechnology 24: 71–82. doi: 10.5511/plantbiotechnology.24.71
[29]  Lozano R, Giménez E, Cara B, Angosto T (2009) Genetic analysis of reproductive development in tomato. International Journal of Developmental Biology 53: 1635–48. doi: 10.1387/ijdb.072440rl
[30]  Quinet M, Kinet JM (2007) Transition to flowering and morphogenesis of reproductive structures in tomato. International Journal of Developmental Biology 1: 64–74.
[31]  Busch BL, Schmitz G, Rossman S, Piron F, Ding J, et al. (2011) Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell 23: 3595–609. doi: 10.1105/tpc.111.087981
[32]  Busch B (2009) Genetic and molecular analysis of aerial plant architecture in tomato. Ph.D thesis, University of K?ln, Germany.
[33]  Mao L, Begum D, Chuang H, Budiman M, Szymkowiak E, et al. (2000) JOINTLESS is a MADSbox gene controlling tomato flower abscission zone development. Nature 406: 910–913.
[34]  Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, et al. (2011) Macrocalyx and jointless interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiology 158: 439–450. doi: 10.1104/pp.111.183731
[35]  Lippman Z, Cohen O, Alvarez J, Abu-Abied M, Pekker I, et al. (2008) The making of a compound inflorescence in tomato and related nightshades. Plos Biology 6: 6398–6403. doi: 10.1371/journal.pbio.0060288
[36]  Astola L, van Mourik S, Molenaar J (2013) Looking for a missing link in the network. In: WCSB 2013, Tampere International Center for Signal Processing. TICSP series. Tampere, Finland, volume 63, pp. 42–45.
[37]  Ljung L (1999) System identification (2nd ed.): theory for the user. Upper Saddle River, NJ: Prentice Hall PTR.
[38]  Stigter JD, Molenaar J (2012) Network inference via adaptive optimal design. BMC Research Notes 5. doi: 10.1186/1756-0500-5-518

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133